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SI Materials and Methods
Data Analysis. Velocities were estimated using the following
procedure:

1. Profiles were fit to hyperbolic tangents. The spatial wave pro-
files from individual days were fit to the function indicated in
Analytical Results Regarding Population Density Waves. All fits
were performed with MATLAB version R2012a nlinfit from
the Statistics Toolbox. We chose to fit individual profiles from
each day, rather than forcing a single set of parameters to fit all
profiles simultaneously. The choice was made to account for
the slight day-to-day variation in the bulk density and wave
profile shape that we observe experimentally. We note that,
for the genetic waves shown in Fig. 4, we approximated the
shape of the wave profile with the same functional form that
was used for the population waves. However, this fit is not
theoretically predicted.

2. The plot of midpoint positionXmvs. time was fit to a line. From
the fits of the wave profiles, we inferred a midpoint position
ðXmÞ for each day. The trajectory of the midpoints over time
was fit to a line, and the velocity of the wave was estimated
from the slope. Linear fits were performed with MATLAB
version R2012a function polyfit.

Estimation of Error and Statistical Significance. Errors for velocity
measurements (vcoop, vinvasion, and vmixed) were estimated from
a single, 9-d run of the experiment based upon the SE in the slope
of the Xm vs. time regression line (1). We note that each day of the
experiment can be viewed as an internal technical replicate in
which the midpoint of the wave ðXmÞ is measured in an identical
fashion. Because the velocities are the slopes of the Xm vs. time
regression line, the high quality of these fits reflects the consistency
of the technical replicates. Consequently, the error bars that we
have reported (SEs of the slope of the regression line) reflect our
confidence in the velocity measured in that particular experiment.
To estimate the significance of differences between vcoop and

vinvasion at a particular dilution factor, we fit the combined Xm
data used to obtain both velocities to a linear regression model.
This model contains an interaction between two predictors (time
and a dummy variable for the cooperators) represented as dif-
ferential slope ðvdiff Þ and intercept ðβ1Þ terms (see below):

Xm = β0 + β1ðcooperatorÞ+ vinvasionðtimeÞ
+ vdiff ðtimeÞðcooperatorÞ:

We performed a standard two-tailed t test to obtain a P value for
vdiff , which provides a direct estimate of the probability of seeing
the measured difference between vcoop and vinvasion purely by
chance (2, 3).

Numerical Simulations in a Discrete Linear Stepping-Stone Model
with Realistic Well Dynamics. To gain intuition for our experimen-
tal system, we performed numerical simulations using a model that
well approximates the experiments that we performed. Here, we
summarizetheformulationofthismodel,andwedemonstratethatthe
model featuresare sufficient topredictourmainexperimental results.
Modeling individual well dynamics in the absence of spatial coupling. To
model the cooperative dynamics within experimental yeast pop-
ulations,weusedapreviously developed growthmodel basedupon

experimental measurements. This model has been discussed ex-
tensively in the supplementary information of (4) and (5). Briefly,
previous work has shown that, owing to the cooperative nature of
growth in sucrose medium, the exponential growth rates of both
cooperators and defectors change as a function of the cell density.
Under low-density conditions, the growth rate of the cooperators
is higher than that of the defectors ðγClow

> γDlow
Þ, because the

defectors are unable to take advantage of the glucose produced by
cooperators in the environment and cooperators retain some
preferential access to the glucose that they produce. This trend is
reversed at high cell densities ðγChigh

> γDhigh
Þ because defectors can

consume the glucose produced by cooperator cells without having
to pay the “cost” of cooperation (4).
A schematic of this two-phase growth model is illustrated in

Fig. S5A. Because each well is well-mixed and nutrient-limited,
yeast growth is modeled to be logistic with a carrying capacity
ðK ≈ 108cells=mLÞ, with low- and high-density phases delineated
by a critical cell density, ðNcritical ≈ 3× 105cells=mLÞ. Given that
Ncritical is over two orders of magnitude lower than K, we assumed
that γClow

and γDlow
was approximately constant (no logistic de-

cline). However, above Ncritical, the growth rates were assumed to
decrease from maximum values (γChigh

and γDhigh
) according to the

logistic equation.
Forall simulations, thegrowthrateswerechosen inaccordancewith

previous experimental measurements (4) as follows: γClow
= 0:33 h−1,

γChigh
= 0:45 h−1, γDlow

= 0:31 h−1, and γDhigh
= 0:46 h−1.

Formulation of discrete linear stepping-stone model. As in the experi-
ments, the simulations involveapopulationof cells that is separated
among several discrete, well-mixed subpopulations arranged on
a line. Initially, a certain number of wells is populated with cells,
whereas the remainder are unpopulated to allow for expansion of
the population into new territory. After 23 h of simulated growth,
a portion of the cells (m2 = 0:25, as in the experiments) is transferred
into each of the neighboring wells. The entire population is
then decreased in size by a fixed factor, which represents a death
process in the growth dynamics. Simulations typically involve 10
repetitions of this cycle. Midpoints of wave trajectories ðXmÞ and
wave velocities were estimated using the procedure described in
Materials and Methods.
Features of this model are sufficient to recapitulate our experimental
results. Fig. S5 B and C show simulations of the model (using the
parameter values shown above). As indicated in the figure, the
features of this simple phenomenological model are sufficient to
recapitulate the qualitative results observed experimentally. Fig.
S5B indicates that, as demonstrated experimentally, the cooperator
allele is favored at the front of the expanding populations. Fig. S5C
illustrates the simulated relationship between the cooperator ve-
locity vcoop and the invasion velocity vinvasion over a range of dilution
factors. As we demonstrated experimentally, the model predicts
that vcoop > vinvasion at low dilution factors, but that vcoop < vinvasion at
high dilution factors.

Analytical Results Regarding Population Density Waves. Although
empirical studies of expanding populations are few and far be-
tween, the ecological theory of range expansions has a long history.
Reaction–diffusion models are widely used in physics (6, 7),
chemistry (8), and biology (9). Spatial models of range expansions
based upon reaction–diffusion equations were first discussed by
Fisher (10) and Kolmogorov (11) in the late 1930s, and a good
summary of the results is found in ref. 12.
Surprisingly, the wave front profiles that we observed em-

pirically were well approximated by these continuous-time,
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continuous-space models, even though our experiments were
discrete in time and space. Here, we summarize the formulation
of a model of range expansions and some useful results. In ac-
cordance with our experiments, we only discuss one-dimensional
expansions here.
The dynamics of range expansions are dictated by both the

growth of the population and the dispersal of individuals into
unpopulated territory. For short-range, isotropic dispersal, the
process can bemodeled with a diffusion term. Thus, themodel can
be formulated as the reaction–diffusion equation shown below:

∂c
∂t
=D

∂2c
∂x2

+GcðcÞc; [1]

where cðx; tÞ is the population density at position x and time t, D
is the effective diffusion coefficient for population dispersal, and
Gc is the per capita growth rate of the population. Note that
D=m

2 , where
m
2 is the portion of cells transferred into each of the

neighboring wells in the discrete simulations.
In principle, GcðcÞ could be any one of a number of functions,

depending upon the growth dynamics of the specific population in
question. In our cooperatively growing yeast populations, we
found that GcðcÞ depends nonmonotonically on the population
density ðcðx; tÞÞ (5). In general, a habitat has a carrying capacity K
owing to resource limitation, and populations usually grow at
a reduced or negative rate close to this upper bound on the density.
Populations displaying cooperative behaviors also tend to grow
slowly or not at all at low densities, because interactions between
individuals are limited. Thus, unlike the standard logistic model,
the per capita growth rate is maximized at an intermediate pop-
ulation density. This nonmonotonic dependence of the per capita
growth rate on the population density is known as the Allee effect
(5, 12, 13). Themost commonmodel of growth with anAllee effect
assumes the following form for the per capita growth rate:

GcðcÞ= gcðK − cÞ
�
c− c*

�
; [2]

where K is the carrying capacity, c* is the critical population
density, and gc modulates the overall magnitude of the per
capita growth rate (12, 13). The strong Allee effect describes
the case in which c* > 0, whereas a weak Allee effect occurs
when −K

2 < c* < 0 (13).
This reaction–diffusion equation admits traveling wave sol-

utions with a time-invariant density profile that moves at a con-
stant velocity. Although nonlinear partial differential equations
of this type are often difficult to solve analytically, exact solutions
for the velocity and shape of the wave profile are known exactly.
The expression for the velocity is shown below:

v=

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgc
2

�
K − 2c*

�r
; if c* ≥ −

K
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DgcK jc*jp

; if c* < −
K
2

: [3]

Previous work has shown that our experimental system demon-
strates a strong Allee effect ðc* > 0Þ and that K and c* approach
each other with increasing dilution factor (5). Thus, the analyt-
ical expression shown above predicts that the traveling wave
velocity should decrease with increasing dilution factor, in line
with what we observed experimentally (Fig. 5A).

The shape of the time-invariant wave profile is given by

cðξÞ= K

1+ e

ffiffiffiffiffiffi
gc
2D

r
Kξ

=
K
2

�
1− tanh

1
2

ffiffiffiffiffiffi
gc
2D

r
Kξ

�

=
ρmax

2

�
1− tanh

�
x−Xm

w

��
; [4]

where ξ= x− vt, and we set K = ρmax, ξ= x−Xm, and w= 2K
ffiffiffiffiffi
2D
gc

q
to connect this analysis to our experimental results.
The population density wave profiles that we observed ex-

perimentally were well fit by this functional form. Thus, by fitting
profiles from each day to this function, we obtained estimates of
XmðtÞ and ρmaxðtÞ.
Analytical Results Regarding Genetic Waves. The spreading of co-
operator and defector alleles can also be modeled with a re-
action–diffusion equation like the one shown below:

∂f
∂t
=D

∂2f
∂x2

+Gf ðf Þf ; [5]

where f ðx; tÞ is the frequency of the defector allele at position x
and time t, D is the effective diffusion coefficient for population
dispersal, and Gf is the relative growth rate of defectors, which is
a function of f to model frequency-dependent dynamics.
Frequency-dependent selection is most often modeled with the

following function:

Gf ðf Þ= gf ð1− f Þ	f * − f


; [6]

where gf ≥ 0 is the strength of selection and f * is the equilibrium
frequency of defectors in a well-mixed population.
Using this model and the results from ref. 11, the velocity of

defectors invading a spatially extended population of coopera-
tors can be shown to be

vinvasion = 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Dgf f *

q
: [7]

As shown in Fig. S5, the equilibrium frequency of defectors
decreases with increasing dilution factor. Thus, if gf remains
constant, the above result predicts that vinvasion should decrease
monotonically with the dilution factor.

Discussion of Outrunning. In the main text, we suggest that a
“sufficiently large” leading region of cooperators is required for
outrunning to occur. To develop this idea further, we can con-
sider the relative movement of the invasion wave (consisting of
a mixture of cooperators and defectors in our experiments) and
the pure cooperator wave, both of which have finite widths be-
cause organisms are discrete entities (14). If the separation be-
tween the two waves is such that the invasion wave front ends
before the cooperator wave front begins, then outrunning will
occur if and only if vcoop > vinvasion.
Interestingly, the notion of outrunning could be extended to

a wide range of systems outside of the case in which cooperators
outrun an invading wave of defectors. A particular example with
frequency-dependent selection is considered in the supplemen-
tary appendix of ref. 15.
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Fig. S1. Distinguishing the two alleles with flow cytometry. The cooperator strain is labeled with yellow fluorescent protein (YFP) that is expressed consti-
tutively from the ADH1 promoter, and the defector strain is labeled with tdTomato expressed constitutively from the PGK1 promoter. We distinguish the two
strains with a Becton Dickinson LSR II HTS flow cytometer with an excitation laser at 488 nm. An emission filter at 530/30 nm detects YFP fluorescence, and
a filter at 575/26 nm detects red fluorescent protein (RFP) fluorescence. The plot above is from a sample from d 6 of the expansion of a mixed population of
cooperators and defectors. The two strains are distinguished based upon RFP fluorescence and separated with the gates shown. This separation identifies 782
defectors out of a total of 17,983 cells, yielding an estimate of \(f = 0.96\) as the frequency of cooperators. A small number of cells (181) were nonfluorescent
(gated in the bottom right), and seven counts were deemed both RFP- and YFP-positive, which indicated that multiple cells were detected simultaneously.
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Fig. S2. Mixed cooperator–defector populations expand as traveling waves. (A) An overlay of the density profiles from the last 7 d of a one-dimensional
expansion of a mixed cooperator–defector population (m = 0.5 and dilution factor = 600) at its equilibrium cooperator frequency. Each profile is normalized to
the maximum density found in the bulk population ðρmaxÞ and shifted by its midpoint position ðXmÞ. The red line shows a fit to the hyperbolic tangent function
derived in SI Text. (B) Similar to the pure cooperator wave, we can measure the velocity of the mixed cooperator–defector wave by plotting the position of the
density profile midpoint ðXmÞ vs. time and then finding the slope of the line. As in A, data from the first 2 d are not included in the fit, because the expanding
population has not reached a steady-state density profile.
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Fig. S3. Effect of dilution factor on the population density in the bulk ðρmaxÞ and equilibrium frequency of cooperators. (A) The maximum population density
(found in the bulk population) over a range of dilution factors between 200 and 1,000. Values of ρmax were estimated based upon fits of individual density
profiles to the hyperbolic tangent function derived in SIText. It is important to note that histidine is limited in the growth media (Materials and Methods).
Because the cooperator strain is a histidine auxotroph (and the defector strain is not), these conditions limit the growth of the cooperator strain without
strongly affecting the defector strain. Moreover, it is likely that the mixed populations saturate at a higher density owing to this difference in auxotrophy.
Error bars indicate the SEM for measurements with n = 6. (B) The equilibrium frequency of cooperators that would be reached in a well-mixed population
undergoing serial growth and dilution by a fixed dilution factor. Estimates of the equilibrium frequency were obtained by averaging the cooperator frequency
in the leftmost two wells (those least affected by expansion dynamics on the front) over the last 5 d of the experiment. Error bars indicate the SEM for
measurements with n = 6.
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Fig. S4. (A) Cooperator density within the mixed cooperator–defector wave peaks near the front of the wave. An overlay of the cooperator and defector
population density profiles within the mixed cooperator–defector wave. Data are shown from the last 4 d of the experiment (m = 0.5 and dilution factor =
600), where darker circles indicate later time points. Each profile is normalized to the maximum density found in the bulk population ðρmaxÞ and shifted by its
midpoint position ðXmÞ. Both cooperators and defectors adopt a time-invariant spatial profile, and the cooperator density peaks at a position near the front of
the mixed cooperator–defector wave. (B) Velocity of expanding cooperator populations decrease with increasing dilution factor. The midpoint of expanding
cooperator waves ðXmÞ plotted over time for a range of dilution factors between 200 and 1,000 (m = 0.5). Darker colors indicate higher dilution factors. All Xm

trajectories are roughly linear in time with slopes that decrease monotonically with increasing dilution factors.
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Fig. S5. Formulation of discrete model and simulation results. (A) Formulation of the model used to simulate growth dynamics in individual wells in discrete
simulations. The schematic depicts the per capita growth rate of cooperators and defectors as a function of cell density. Yeast growth is modeled as logistic
with a carrying capacity (K ≈ 108 cells/mL). Low- and high-density growth phases are delineated by a critical cell density, Ncritical ≈ 3× 105 cells/mL. Because Ncritical

is over two orders of magnitude lower than K, γClow
and γDlow

are assumed to be approximately constant (no logistic decline). However, above Ncritical ; the
growth rates are assumed to decrease from maximum values (γChigh

and γDhigh
) according to the logistic equation. (B) Discrete simulation of the frequency of

cooperators as a function of time and space. Parameter values are as described in SI Text. As we found experimentally, the discrete model predicts that the
cooperator allele is enriched at the front of expanding populations. (C) Discrete simulation of the velocity of cooperators ðvcoopÞ and the velocity of defector
invasion ðvinvasionÞ as a function of dilution factor. Parameter values are as described in SI Text. As we demonstrated experimentally, the discrete model predicts
two growth regimes, in which vcoop > vinvasion at low dilution factors and vcoop < vinvasion at high dilution factors.
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Fig. S6. Cooperators do not outrun defectors at high dilution factors. Experimental observation of defectors invading a spatially extended population (m = 0.5
and dilution factor = 800). Under these conditions, Δv = vcoop − vinvasion ≈−0:1 wells/d. Over 9 d, the “headstart” region containing pure cooperators decreases
from four to three wells, suggesting that the cooperators and defectors will eventually become completely mixed and spread together under these conditions.

Fig. S7. Schematic of ‟splitting” in expanding populations. In theory, it is possible for cooperators to split from an expanding mixed population of cooperators
and defectors, after which the cooperators travel as a pure wave ahead of the mixed wave. We did not observe this effect experimentally, even under
conditions in which (i) the cooperator allele was enriched on the front and (ii) the cooperators could ‟outrun” the defectors. Our result is consistent with
theoretical predictions suggesting that these two features are necessary but not sufficient conditions for splitting to occur.
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Fig. S8. Results are qualitatively reproducible across experiments. (A) An overlay of the density profile (in black) with the cooperator frequency profile (in
blue) from d 9 of the expansion of a mixed cooperator–defector population (m = 0.5 and dilution factor = 400). The density profile is normalized to the
maximum density found in the bulk population ðρmaxÞ. Consistent with data shown in the main text, the cooperative allele is strongly enriched at the front of
the expanding population. (B) Replicate measurements of the velocities of pure cooperators ðvcoopÞ and invading defectors ðvinvasionÞ over a range of dilution
factors. Asterisks indicate the magnitude of the P value for the difference between vcoop and vinvasion at a particular dilution factor (*P < 0.05, **P < 0.01, ***P <
0.001). Error bars for velocities are SEs in the slope of the Xm vs. time plot. (C) Additional replicate measurements of the velocities of pure cooperators ðvcoopÞ
and invading defectors ðvinvasionÞ over a range of dilution factors. Asterisks are the same as in B. In all three experimental replicates (including that shown in the
main text), we found that there were two regimes, where at high dilution factors defectors invade more quickly than the cooperators can escape
ðvcoop < vinvasionÞ, and at low dilution factors, cooperators can ‟outrun” the invasion ðvcoop > vinvasionÞ. (D) A comparison of the velocity of expanding cooperators
ðvcoopÞ and the velocity of invading defectors ðvinvasionÞ as a function of dilution factor. Data are compiled from three independent experiments. To account for
experiment-to-experiment variability, all vcoop data were normalized by their x intercept (that is, the extrapolated dilution factor where vcoop = 0) (normali-
zation factors were determined empirically to be 1.4 and 1.01 for data shown in B and C, respectively). Dilution factors for the corresponding invasion velocities
were rescaled by the same factor. We then compared the slopes of vcoop and vinvasion as a function of dilution factor by using a multiple linear regression model
(analogous to that discussed in SI Materials and Methods). Although there is a great deal of variation between experiments, the crossing of vcoop and vinvasion is
still statistically significant ðp= 4× 10−4Þ. We note that the exact correspondence between velocity and dilution factor was highly variable between experi-
ments. In simulations, we found that this difference could be explained by a 2% decrease in the growth rates of the two strains, which could easily arise
through small variations in the media formulation or growth conditions. As a result, experiment-to-experiment variation primarily captures small variations in
media formulation, differences in the temperature of the incubator or the room on a given week, or intrinsic differences between single colonies.
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