
Bacterial cheating drives the population dynamics
of cooperative antibiotic resistance plasmids

Eugene A Yurtsev1,3, Hui Xiao Chao1,3, Manoshi S Datta2, Tatiana Artemova1 and Jeff Gore1,*

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA and 2 Computational and Systems Biology Program, Massachusetts Institute
of Technology, Cambridge, MA, USA
3These authors contributed equally to this work.
* Corresponding author. Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Tel.: þ 1 617 715 4251; Fax: þ 1 617 258 6883; E-mail: gore@mit.edu

Received 10.2.13; accepted 7.7.13

Inactivation of b-lactam antibiotics by resistant bacteria is a ‘cooperative’ behavior that may allow

sensitive bacteria to survive antibiotic treatment. However, the factors that determine the fraction of

resistant cells in the bacterial population remain unclear, indicating a fundamental gap in our

understanding of how antibiotic resistance evolves. Here, we experimentally track the spread of a

plasmid that encodes a b-lactamase enzyme through the bacterial population. We find that

independent of the initial fraction of resistant cells, the population settles to an equilibrium fraction

proportional to the antibiotic concentration divided by the cell density. A simplemodel explains this

behavior, successfully predicting a data collapse over two orders of magnitude in antibiotic

concentration. This model also successfully predicts that adding a commonly used b-lactamase

inhibitor will lead to the spread of resistance, highlighting the need to incorporate social dynamics

into the study of antibiotic resistance.
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Introduction

A frequent mechanism of antibiotic resistance involves the

production of an enzyme that inactivates the antibiotic

(Davies, 1994; Wright, 2005). The acquisition of such an

enzyme through a plasmid often imposes a metabolic cost on

the individual cell (Bouma and Lenski, 1988; Dahlberg and

Chao, 2003; Andersson, 2006); however, since resistant cells

inactivate the antibiotic, reducing its extracellular concentra-

tion, they help protect the entire bacterial population

(Dugatkin et al, 2003; Brook, 2004). Hence, antibiotic

inactivation can be viewed as a cooperative behavior,

suggesting that sensitive ‘cheater’ bacteria that do not help

to break down the antibiotic may be able to survive antibiotic

treatment in the presence of resistant cells.

Previous studies have provided valuable insight into the

evolutionary processes that govern the spread of antibiotic

resistance (Neu, 1992; Goossens et al, 2005; Weinreich et al,

2006; Lee et al, 2010; Zhang et al, 2011; Toprak et al, 2012).

However, despite the clinical importance of antibiotic resis-

tance phenotypes, there has been a relative dearth of

quantitative analysis of cooperative bacterial growth in the

presence of antibiotics. Many microbiologists have observed

the presence of ‘satellite colonies’ surrounding a resistant

colony on an agar plate containing the b-lactam ampicillin.

The presence of satellite colonies, which are composed of cells

that are in principle unable to grow in ampicillin, is evidence of

the extremely cooperative nature of ampicillin resistance.

Indeed, recent experiments have detected coexistence between

resistant and sensitive cells using a resistance enzyme that was

genetically modified to inactivate the antibiotic outside the cell

(Dugatkin et al, 2005; Perlin et al, 2009). Furthermore, it is

known in the clinic that bacteria carrying even wild-type

enzymes may provide protection to pathogenic but otherwise

sensitive bacteria (Hackman and Wilkins, 1975; Brook, 1984,

2004). The ability of sensitive bacteria to survive antibiotic

treatment suggests that the spread of plasmids that encode

cooperative antibiotic resistance genes should exhibit non-

trivial population dynamics.

Results

Population dynamics of antibiotic resistance

plasmids

To probe the population dynamics of such plasmids, we

co-cultured a sensitive strain of E. coli bacteria with an

isogenic strain containing an additional plasmid encoding a

b-lactamase enzyme. The enzyme hydrolytically inactivates

the antibiotic (Bonomo and Tolmasky, 2007), providing
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high-level resistance against ampicillin. In our experiments,

the bacterial culture was grown to saturation over 23 h in the

presence of ampicillin. The saturated culture was then diluted

(initially by 100� ) into freshmedia containing the same initial

antibiotic concentration, serving as the starting culture for the

following day. Using flow cytometry, we were able to track

how the fraction of resistant cells changed over time (Materials

and methods; Supplementary Figures S1 and S2).

We found that in the presence of resistant bacteria, sensitive

bacteria survived and even thrived at a clinically relevant

(Foulds, 1986) antibiotic concentration of 100 mg/ml, which is

50-fold larger than their minimum inhibitory concentration

(MIC) (Figure 1A; Supplementary Figure S3). A bacterial

populationwith a high fraction of resistant cells inactivated the

antibiotic quickly, allowing its sensitive cells to increase in

frequency. Over time, the resistant fraction decreased until

finally settling to a value of B0.25. To test whether this

fraction corresponded to an equilibrium fraction, we started a

culture at a fraction below the supposed equilibrium. One

might have expected the resistant fraction to gradually

converge to the equilibrium value. Instead, the resistant

fraction initially overshot the equilibrium, jumping to

B0.95, and only then proceeded to decay to the equilibrium.

The resistant fraction at the end of the day therefore depends

non-monotonically on the resistant fraction at the beginning of

the day.

Using difference equation maps to study

population dynamics

Since the final cell density after 23 h of growth was

approximately constant regardless of the starting conditions

(Supplementary Figures S4–S6), the only parameter that

changed from day-to-day was the fraction of resistant cells.

To examine how the final resistant fraction depended on the

initial resistant fraction on a given day, we used the time

course data (Figure 1A) to generate a ‘difference equation’

map (Figure 1B) relating the fraction of resistant cells at the

end and beginning of each day. As expected, the difference

equation is non-monotonic as a result of the ‘overshoot’

discussed previously, and the equilibrium fraction can be

obtained by findingwhere the difference equationmap crosses

the 45-degree line. In principle, if the underlying difference

equation is known, then one can estimate the dynamics of the

population over time by repeated application of the difference

equation (or by the process of cobwebbing illustrated in

Figure 1B).

In an attempt tomap the difference equation using data from

a single day (instead of the 8-day time course used in Figure 1A

and B), we started cultures at a range of different initial

resistant fractions and measured the resulting final resistant

fractions after a single day of growth (Figure 1C). Such maps

obtained over a single day of growth recapitulated the

dynamics observed over multiple days, but with a slight

overestimate of the equilibrium-resistant fraction (Figure 1B;

Supplementary Figure S7). As might be expected, cultures

grown at higher antibiotic concentrations had a larger

equilibrium fraction of resistant cells (Figure 1C). However,

the difference equations revealed that over a broad range of

conditions, the sensitive cells could invade when present at

low frequency. Starting with a resistant fraction below the

equilibrium leads to an initial overshoot in the fraction of

resistant cells in the population. After the overshoot, the

resistant fraction proceeds to evolve to the equilibrium

fraction, which is independent of the initial composition of

the population. The resistant cells are not driven extinct by the

sensitive ‘cheater’ cells because b-lactamase is largely

contained within the periplasmic space of the resistant cells

(Nikaido and Normark, 1987; Livermore, 1995; Dugatkin et al,

2003), thereby giving them some preferential access to the

benefits of their ‘cooperative’ behavior (Gore et al, 2009).

Since both resistant and sensitive cells can invade the

population when present at low frequency, we observe

coexistence of the two strains even in our well-mixed liquid

cultures (Nowak and Sigmund, 2004; Doebeli and Hauert,

2005; Dugatkin et al, 2005; Gore et al, 2009). This coexistence

between ‘cooperators’ and ‘cheaters’ is similar to what is

A

B C

Figure 1 In the presence of resistant cells, sensitive cells can survive at
otherwise lethal antibiotic concentrations. (A) Experimental time traces showing
the evolutionary dynamics between sensitive E. coli and an isogenic strain that is
resistant as the result of a plasmid containing a b-lactamase gene. A single
resistant and a single sensitive colony were used to create three cultures with a
different initial fraction of resistant cells. These three cultures were then grown for
1 day in the absence of ampicillin to make sure that resistant and sensitive cells
experienced the same growth conditions (see Materials and methods). Then,
every 23 h, the fraction of resistant cells was measured using flow cytometry,
and the cultures were diluted by a factor of 100� into fresh media containing
100mg/ml ampicillin. Each data point represents a single flow cytometry
measurement. (B) The orange time trace that starts atB10% in subplot (A) was
replotted as a difference equation map that shows how the resistant fraction on
day nþ 1 depends on the fraction on day n. The light orange line is an estimation
of the difference equation. A simple trick to estimate the time dynamics with a
difference equation is to use cobwebbing (dark orange lines), in which the daily
dynamics are obtained by bouncing back and forth between the data line and the
dashed diagonal line. (C) For each antibiotic concentration (indicated adjacent to
each curve), a difference equation map was obtained experimentally by starting
populations at 24 different initial fractions and measuring the final fraction after
23 h of growth. The intersection of a given difference equation map with the
diagonal line represents the equilibrium fraction for that particular condition.
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observed when individuals are playing the cooperative

‘snowdrift’ game (Gore et al, 2009), although it is important

to note that our experimentally observed overshoot in resistant

fraction over time (Figure 1) indicates that the interactions

between different cell types here are much richer than are

assumed in the standard models in game theory.

A simple model captures the population dynamics

To better understand the population dynamics, we developed a

simple model that describes the growth of the bacteria in the

presence of antibiotics (Figure 2A and B; Supplementary

Figure S8). For the range of antibiotic concentrations we

probed, the resistant cells were essentially unaffected and

grew at a constant rate of gR (Supplementary Figures S8, S9B,

and S10). We assumed that sensitive cells grow at a rate of

gS4gR for antibiotic concentrations below their MIC, but die

at a rate of gD for higher concentrations (Supplementary

Figures S3, S8, and S9). Plating experiments showed that,

in addition to cell death, we should incorporate a short

lag phase that follows after inoculation of the bacteria

into fresh media, during which bacteria neither divide

nor die (Supplementary Figure S9). We modeled antibiotic

degradation phenomenologically using Michaelis–Menten

kinetics with a maximum rate per cell Vmax and an effective

Michaelis constant (KM) (Supplementary information). While

this model clearly neglects many aspects of bacterial growth in

antibiotics, it successfully captures the key features of the

dynamics (Figures 1C and 2C) and predicts conditions that

enable coexistence between resistant and sensitive cells

(Figure 2D).

We obtained an exact analytic solution of this model that

describes the dependence of the equilibrium-resistant fraction,

fR, on the initial antibiotic concentration, Ai, and initial cell

density, Ni. The model predicts that the equilibrium fraction

scales in the following manner:

fR �
Ai þKM lnðAi=MICÞÿMIC

VmaxNi
)

Ai44KM;MIC
�

Ai

VmaxNi

This relationship is surprisingly insensitive to many para-

meters, including the length of the lag phase, rate of cell

death, and cost associated with resistance (Supplementary

information). In particular, our analytic solution of the model

predicts that the resistant fraction at equilibrium increases

approximately linearly with the antibiotic concentration, a

prediction borne out in experimental difference maps obtained

at multiple antibiotic concentrations (Figure 3A–C). Moreover,

the model predicts that the equilibrium fraction is inversely

proportional to the starting cell density. This prediction was

experimentally confirmed by measuring the difference equa-

tions at four different starting cell densities. In each case, the

equilibrium-resistant fraction increases linearly with antibiotic

concentration, but with slopes that decrease with increasing

initial cell density (Figure 3A–C).We therefore find a surprising

simplicity to the population dynamics of the antibiotic

resistance plasmid in the population, despite the biological

complexity of the interaction between the cells and the

antibiotic.

In addition to providing significant insight into the popula-

tion dynamics, the model can quantitatively describe the

experimental data. To acquire realistic parameters for the

model, we measured the growth rate of resistant bacteria

(gR¼ 1.1/h; Supplementary Figure S9) and the relative growth

rate of sensitive bacteria (gS/gR¼ 1.15; Supplementary

Figure S11). Together, these allowed us to deduce the overall

metabolic cost of carrying the plasmid (gSÿ gR¼B0.17/h),

which includes the cost of plasmid maintenance, of expressing

the b-lactamase enzyme, and of expressing a red-fluorescent

protein used for tracking the resistant fraction (Supplementary

Figure S1). Control experiments using another plasmid that did

not express a fluorescent protein exhibited similar population

dynamics (Supplementary Figure S12). We proceeded to

measure the death rate of sensitive bacteria in the presence of

the antibiotic (2.8/h; Supplementary Figure S9) and the lag

time before cell growth/death (1h; Supplementary Figure S9).

Using these experimentally measured parameters, we then

fit our 30 measured equilibrium fractions (in Figure 3C) to

obtain estimates of MIC¼ 1.1 mg/ml, Vmax¼ 106 molecules/

(CFU � s), and KM¼ 6.7 mg/ml. This MIC is slightly lower than

our measured value (B2 mg/ml; Supplementary Figure S3)

because antibiotic concentrations below the measured MIC

already partially inhibit the growth of sensitive bacteria

(Supplementary Figure S3). In addition, our fitted value for

Figure 2 A simple model describes the population dynamics of a cooperative
antibiotic resistance plasmid in the b-lactam antibiotic ampicillin. (A) Growth rates
of resistant (blue) and sensitive (red) bacteria as a function of antibiotic
concentration. Free of the metabolic cost associated with resistance, sensitive
cells grow faster than resistant cells (gS4gR) at antibiotic concentrations below
the MIC of the sensitive bacteria. Above the MIC, sensitive cells die at a rate of
gD. (B) The population dynamics within a single competition cycle (1 day). During
the lag phase (totlag), neither cell type divides nor dies, but the antibiotic is
constantly hydrolyzed by resistant cells. After the lag phase, each sub-population
grows at a rate that depends on the extracellular antibiotic concentration. At time
tb, the extracellular antibiotic concentration drops below the MIC of the sensitive
cells. Cell growth ceases when the total population density reaches saturation.
Inset: the time trace of the resistant fraction within a single day. (C) The model
gives rise to difference equations that resemble experimental data (Figures 1C,
3A, and B). (D) The equilibrium-resistant fraction predicted by our model as a
function of the antibiotic concentration and the initial cell density. According to the
model, coexistence between resistant and sensitive cells is possible at antibiotic
concentrations above the MIC of sensitive cells.
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the maximum rate of hydrolysis per cell Vmax is reasonable

since a single enzyme can hydrolyze as many as B103

molecules per second (Nikaido and Normark, 1987). Although

the estimate of KM agrees with the literature values (from 4.9 to

26.5mg/ml; Livermore et al, 1986; Zimmermann and Rosselet,

1977; Dubus et al, 1994), we note that the KM in our model is a

phenomenological parameter because antibiotic hydrolysis

occurs both inside and outside the cells (Livermore, 1995;

Zimmermann and Rosselet, 1977). The resistant fraction at

equilibrium in our model increases linearly with the antibiotic

concentration forA4KM, but deviates slightly from linearity for

AoKM due to the Michaelis–Menten kinetics of antibiotic

degradation (Figure 3C). This simple model not only captures

the behavior of the equilibrium fractions, but also successfully

predicts the experimental difference equations using the same

parameter values (Figure 3A andB; Supplementary Figure S13).

Another way to think about the scaling predicted by the

model is that, at equilibrium, the number of resistant cells is

proportional to the antibiotic concentration (NRi¼ fR �NiBAi).

Indeed, a plot of the equilibrium density of resistant cells

against the antibiotic concentration revealed a striking collapse

of the data extending over two orders of magnitude in the

antibiotic concentration (Figure 3D). Intuitively, more resistant

cells would be required to deactivate larger amounts of the

antibiotic within a fixed period of time. Non-intuitively, the

model predicts that the time necessary for a bacterial

population to saturate in the presence of the antibiotic is

minimized at a resistant fraction that corresponds neither to the

equilibrium fraction nor to a fully resistant population

(Supplementary Figure S14). Given the similarity between

our experimental difference equations and the well-known

‘logistic equation’ from theoretical ecology (May, 1976), we

used ourmodel to characterizewhen the equilibrium fraction is

expected to become unstable, leading to oscillations around the

equilibrium. We found that the equilibrium fractions should

become unstable as the antibiotic concentration decreases;

however, the size of the oscillations does not become large

enough to observe experimentally (Supplementary Figure S15).

Addition of a b-lactamase inhibitor selects for

resistance

Given the predictive power of the model, we explored the

expected consequences of adding a b-lactamase inhibitor such

as tazobactam, which is used clinically together with many

b-lactam antibiotics (Bush, 1988; Livermore, 1995; Drawz and

Bonomo, 2010). Tazobactam competitively binds b-lactamase

enzymes (Bush, 1988; Drawz and Bonomo, 2010) and prevents

them from hydrolyzing the antibiotic, leading to an increase in

the effective KM. A sufficiently large increase in the KM can

significantly compromise the ability of resistant cells to

degrade the antibiotic, leading to complete inhibition of

bacterial growth (Supplementary Figure S16). However, if

the increase in KM is not sufficiently large, then the resistant

cells may survive the treatment, but the larger KM would

hinder their ability to protect sensitive cells against the

antibiotic. Specifically, as the equilibrium fraction of resistant

cells is proportional to KM, the model predicts that adding a

b-lactamase inhibitor will lead to an increase in the resistant

fraction. We have tested this prediction and found that the

addition of tazobactam can indeed result in a completely

resistant population (Figure 4A; Supplementary Figure S17).

Not only does the model provide qualitative insight, but it

also makes surprisingly accurate quantitative predictions

about the population dynamics that take place in the presence

of the inhibitor. Although the actualmechanism of inhibition is

more complicated (Bonomo and Tolmasky, 2007), wemodeled

tazobactam as a competitive inhibitor, which increases the KM

to Keff¼KM � (1þ [I]/KI), where [I] and KI are the inhibitor

concentration and dissociation constant, respectively. As the

equilibrium fraction increases linearly with KM, the model

predicts that it should also increase linearly with the inhibitor

concentration [I]. To probe this predicted dependence of the

equilibrium fraction on the inhibitor concentration, we

measured the equilibrium fractions from maps of difference

equations obtained at varying tazobactam concentrations

(Figure 4B and C). We successfully fit the new 31 equilibrium

fractions (Figure 4C) using one additional free parameter KI,

confirming the predicted linear dependence on the inhibitor

concentration. The KI from the fit (4.6 ng/ml) was well within

the literature values (3–11.4 ng/ml; Bret et al, 1997; Kitzis et al,

1988; Drawz and Bonomo, 2010). Remarkably, using the value

A

C

B

D

Figure 3 Experimental difference equations confirm model predictions
regarding the equilibria and dynamics of resistant and sensitive bacteria.
(A, B) Experimental difference equations obtained at two dilution factors (100�
and 200� ) and different antibiotic concentrations. At a given antibiotic
concentration, an increase in the dilution ratio leads to stronger selection for
resistance. Each difference equation plotted in (A, B) includes the data obtained
on three different days. Measurement error from flow cytometry was typically
smaller than symbol size. (C) The equilibrium fractions as a function of ampicillin
concentration at four different dilution factors (see Supplementary Figure S13 for
difference equations). The relationship is approximately linear for antibiotic
concentrations higher than KM. The equilibrium fractions were extracted from the
difference equation plots by determining the intersection between the difference
equations and the diagonal line (dashed line in A). Error bars represent standard
error of the mean (n¼ 3). (D) Plotting the initial density of resistant cells at
equilibrium as a function of antibiotic concentration reveals a data collapse that
extends over two orders of magnitude in the concentration. (A–D) Solid curves
show a single fit of the model to all the experimental data.
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of KI obtained from the fits to the equilibrium fractions

successfully recapitulated the dynamics across the entire

range of the difference equations (Figure 4B; Supplementary

Figure S17).

To verify that our conclusions were not limited to

tazobactam, we tried the b-lactamase inhibitor sulbactam,

which is often administered together with ampicillin clinically

(Foulds, 1986; Bush, 1988; Drawz and Bonomo, 2010). We

found that, at least for our experimental conditions (E. coli

bacteria inoculated at an initial cell density of B105 cells/ml),

the addition of sulbactam can lead to the accelerated spread of

resistant bacterial cells in a range of clinically relevant

antibiotic concentrations (Supplementary Figure S18).

Discussion

We have presented a quantitative analysis of the population

dynamics that stem from the cooperative nature of antibiotic

inactivation, and which can lead to coexistence between

sensitive cells and resistant cells. Our analysis was based

on two key features: (1) the presence of a metabolic cost

associated with being resistant, and (2) the inactivation of the

antibiotic by resistant cells. When both features apply, our

model suggests that resistant and sensitive cells may coexist at

high concentrations of the antibiotic, with the fraction of

resistant cells approximately proportional to the antibiotic

concentration divided by the cell density. We found that this

simple dependence on antibiotic concentration and cell

density successfully predicts the equilibrium fraction of

resistant cells over two orders of magnitude in antibiotic

concentration (Figure 3D).

This model not only agrees quantitatively with experimental

data, but it also provides insight into the conditions that enable

coexistence between resistant and sensitive cells. For example,

a recent study observed coexistence with a mutated

b-lactamase enzyme that inactivated the antibiotic outside

the cell (Dugatkin et al, 2005), allowing resistant cells to

efficiently ‘share’ their resistancewith the bacterial population

to support coexistence. However, in our study, we were able to

observe coexistence even with a wild-type b-lactamase

enzyme, which is primarily periplasmic (Livermore, 1995).

To properly interpret these results, it is important to recognize

that the site of antibiotic inactivation determines the degree of

preferential protection offered to resistant cells. Furthermore,

as long as resistant cells are sufficiently protected to be

unaffected by the antibiotic, only the overall rate of antibiotic

inactivation is important in determining the dynamics

between resistant and sensitive cells. Hence, even if antibiotic

inactivation occurs inside the cell, it is still a cooperative

behavior that may allow sensitive cells to survive.

The interplay between initial cell density and antibiotic

concentration is often important in determining growth

dynamics in antibiotics (Brook, 1989; Tan et al, 2012).

Likewise, our model suggested that the key parameter in

governing the population dynamics was not the antibiotic

concentration, but the ratio between the antibiotic concentra-

tion and the initial cell density. Specifically, we found that

at high cell densities, resistant cells could protect sensitive

cells against antibiotic concentration as high as 200 mg/ml

(Figure 3A), which is 100-fold higher than the MIC of sensitive

cells. Given the cooperative nature of antibiotic inactivation, it

is likely that other ecological factors will be important to

consider when attempting to understand the evolution of

antibiotic resistance (Celiker and Gore, 2012; Datta et al, 2013;

Sanchez and Gore, 2013).

One might worry that our conclusions may be limited to

laboratory strains as natural strains would be better adapted to

plasmids found in the wild. However, our model and

experiments argue that the equilibrium fraction depends only

weakly on the fitness cost of carrying the resistance plasmid

(Supplementary Figure S19). Compensatory mutations that

alleviate the cost of resistance (Bouma and Lenski, 1988;

Dahlberg and Chao, 2003; Andersson, 2006) will increase the

time it takes the population to settle into its equilibrium

fraction, but will not significantly change that fraction. Since

ourmodel only uses a few key phenotypic traits to characterize

the outcome of bacterial growth in the antibiotic, it should be

broadly applicable in describing both intra-species (Dugatkin

et al, 2005) and inter-species (Perlin et al, 2009) dynamics.

A B C

Figure 4 As predicted by the model, addition of the b-lactamase inhibitor tazobactam increases the fraction of resistant cells in the population. (A) Sensitive E. coli cells
increase in frequency when grown in 20 mg/ml ampicillin in the absence of tazobactam; however, the addition of the inhibitor at a concentration of 1000 ng/ml results in a
completely resistant bacterial population. Cultures were diluted daily by a factor of 100� into fresh media containing 20 mg/ml ampicillin. Error bars represent standard
error of the mean of four different bacterial cultures. (B) Experimental difference equation maps for four different concentrations of the inhibitor tazobactam (in ng/ml) at a
background of 20 mg/ml ampicillin and a dilution factor of 100� (see Supplementary Figure S17 for more difference equations). Each difference equation map contains
the data obtained on three different days. (C) As predicted by the model, the equilibrium fractions depend linearly on the concentration of the inhibitor tazobactam with a
slope that depends on the ampicillin concentration. The equilibrium fractions were extracted from the difference equation plots by determining the intersection between
the difference equations and the diagonal line (dashed line in A). Error bars represent standard error of the mean (n¼ 3). (B, C) Solid curves show a fit of the model to all
the experimental data with a single free parameter of KI¼ 4.6 ng/ml (other parameters held fixed).
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Within the framework of ourmodel an important qualitative

difference between using a bactericidal versus a bacteriostatic

antibiotic is that the overshoot of the resistant fraction above

the equilibrium fraction should only appear when using a

bactericidal antibiotic (Figure 1A; Supplementary Figure S20).

The lower the initial resistant fraction is, the longer it takes for

the antibiotic to be inactivated, and themore opportunity there

is for a bactericidal antibiotic to kill the sensitive strain and

promote the growth of the resistant strain.

Throughout our experiments, we limited ourselves to

antibiotic concentrations that do not affect the growth of

resistant cells. However, at high enough concentrations, a

bactericidal antibiotic may lead to lysis of resistant cells and

the subsequent release of their b-lactamase enzymes into the

extracellular space (Sykes and Matthew, 1976). Since these

enzymes inactivate the antibiotic even faster extracellularly,

the death of resistant cells may further increase the coopera-

tive nature of bacterial growth in the antibiotic (Tanouchi et al,

2012). Such a scenario may explain the observed non-

monotonic selection for resistance and difference equation

maps that deviate from ourmodel at high concentrations of the

b-lactam antibiotic piperacillin (Supplementary Figure S21).

Understanding how the fraction of resistant bacteria

changes with time is a central goal in studying antibiotic

resistance. This already difficult task is further complicated by

cooperative behaviors that allow resistant microbes to ‘share’

their resistance with the rest of the bacterial population. The

cooperative nature of antibiotic inactivation causes the fitness

of resistant cells to decrease as their fraction in the bacterial

population increases (i.e., it leads to negative frequency-

dependent selection; Dugatkin et al, 2005; Figure 3A and B).

Overall, this enables coexistence between resistant and

sensitive cells, even in the absence of the spatial structure

present in biofilms (Kerr et al, 2002; O’Connell et al, 2006;

Narisawa et al, 2008), interactions between bacteria and

antibiotic degradation products (Palmer et al, 2010), bacterial

persistence (Lewis, 2007), and indole production (Lee et al,

2010). As antibiotic inactivation is a frequent mechanism

of antibiotic resistance (Wright, 2005), similar population

dynamics may appear with other classes of antibiotics (e.g.,

macrolides and aminoglycosides) and with chromosomally

encoded enzymes. However, despite the potential ubiquity of

cooperative antibiotic resistance, the social aspect of antibiotic

resistance remains underappreciated, highlighting the impor-

tance of quantitatively characterizing social interactions to

gain a thorough understanding of the maintenance of

phenotypic and genotypic diversity within populations.

Materials and methods

Strains

All strains are derived from Escherichia coli DH5a. The resistant strain
contained the pFPV-mCherry plasmid (Drecktrah et al, 2008) (also see
Addgene plasmid 20956), expressing a TEM-1 b-lactamase enzyme
and an mCherry fluorescent protein. In addition, the resistant and
sensitive strains expressed cerulean and yellow fluorescent protein
genes, respectively, under the promoter PlacUV5, and a kanamycin-
resistant gene, both carried on the plasmid pZS25O1þ11 (Lutz and
Bujard, 1997; Garcia and Phillips, 2011) (origin of replication: pSC101).
Control experiments in which the cerulean and yellow fluorescent

markers were swapped gave nearly identical difference equation maps
(Supplementary Figure S22).

Competition experiments

All cultures were grown in a shaker at 500 r.p.m. and 371C. Before the
competition experiments, single colonies of resistant and sensitive
strains were grown separately in 5ml of lysogeny broth (LB) together
with antibiotics for selection for 23h. The saturated cultures
(corresponding to a density of B107 cells/ml) were diluted by a factor
of 100� and co-cultured at different fractions in 96-well plates
containing LB and 5mg/ml of kanamycin for another 23h to
synchronize the growth state of both strains (see Supplementary
Figure S11). All competition experiments were carried out using
synchronized mixed cultures. The cultures were diluted into 96-well
plates containing 5mg/ml of kanamycin, LB, and appropriate concen-
trations of ampicillin, tazobactam, and sulbactam, and grown for
another 23h. In multi-day experiments, cultures were serially diluted
into 96-well plates containing freshly prepared media with appropriate
concentrations of antibiotics. Control experiments showed that the
population dynamics were similar regardless of whether kanamycin
was absent or present at 5mg/ml (Supplementary Figure S23). In
addition, control experiments showed that similar growth dynamics
apply in other b-lactam antibiotics (Supplementary Figure S24).
Fractions were determined using flow cytometry on a BD-LSR II and
confirmed by plating (Supplementary Figures S1 and S2).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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