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Supplementary Figures 

 

 
Supplementary Figure 1: Measurement of resistant fraction using flow cytometry. 

Shown is raw data from the flow cytometer: (A) PBS medium with no cells, and (B) a mixture of 

resistant and sensitive cells in PBS. To calculate the fraction of resistant bacteria, the number of 

fluorescent events registered in the gates corresponding to resistant and sensitive cells is counted 

(B). In addition, we measure the rate of false positives due to noise (A), and use it to correct the 

fraction of resistant bacteria. Because the noise level is low, the difference between corrected and 

uncorrected fractions is only ~0.01-0.03. The error in the fraction due to binomial counting 

statistics is small (~0.01) since there are thousands of events. 
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Supplementary Figure 2: Calibration of resistant fraction. The fraction of resistant 

cells measured by plating is equivalent to that measured on the flow cytometer. Sensitive and 

resistant cultures were grown from single colonies in 5 mL of LB with antibiotics at 37ºC for 23 

hours. The saturated sensitive and resistant cultures were mixed at different ratios yielding 12 

mixed cultures. For each mixed culture, the fraction of resistant cells was determined using flow 

cytometry (Supplementary Figure 2). In addition, each mixed culture was plated on an LB-agar 

Petri dish, and the fraction of resistant cells was determined by counting the number of resistant 

and sensitive colony forming units (CFUs). Resistant and sensitive cells had different fluorescent 

markers, and were easy to tell apart using a fluorescent microscope. Error bars represent 

binomial counting error. The error associated with the fraction determined using flow cytometry 

is smaller than the size of the symbol. 
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Supplementary Figure 3: Growth of sensitive cells in the antibiotic. The minimum 

inhibitory concentration (MIC) was determined by the lowest ampicillin concentration that 

inhibited bacterial growth (i.e., yielding no visible cell growth). In the experiment shown above, 

this concentration corresponds to ~1.8 µg/mL, and was not affected by the addition of 5 µg/mL 

of kanamycin. Notably, ampicillin starts to affect the growth of sensitive cells even at 

concentrations below the MIC. This fact is ignored by our model, which implies that the model's 

MIC may be slightly different from the measured MIC. To measure the MIC, sensitive cells were 

grown in 5 mL of LB and 5 µg/mL of kanamycin for 23 hours. The saturated culture was then 

diluted into media containing different ampicillin concentrations and grown for 23 hours starting 

at an initial cell density of ~4·10
3
 CFU/mL. The 23 hour growth cycle was used to closely mimic 

the competition experiments. Our MIC was measured at a low cell density to more accurately 

characterize the effect of antibiotic on killing single cells. Alternatively, measuring the MIC 

using the standard cell density of ~5·10
5
 CFU/mL and 20 hours of growth, yielded an MIC of ~2 

µg/mL. Regardless of the method used to measure the MIC, ampicillin starts to affect the growth 

of sensitive cells even at concentrations below the MIC. 
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Supplementary Figure 4: Final cell density is independent of ampicillin 

concentration. Shown is the cell density after 23 hours of growth in LB with 5 µg/mL of 

kanamycin and varying concentrations of ampicillin. Experiments were carried out at a dilution 

factor of 100x. Circles correspond to individual data points, squares to the means, the black error 

bars to the standard deviations, and the red error bars to the standard errors of the mean. Cell 

density corresponds to the optical density measured at 600 nm. Experiments were repeated on 3 

different days (trials 1-3). These are the three experiments from which Figure 3 in the main text 

was generated. 
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Supplementary Figure 5: Final cell density is independent of tazobactam 

concentration. Shown is the cell density after 23 hours of growth in LB with 5 µg/mL of 

kanamycin, 2 µg/mL of ampicillin and varying concentrations of tazobactam. Experiments were 

carried out at a dilution factor of 100x. Circles correspond to individual data points, squares to 

the means, the black error bars to the standard deviations, and the red error bars to the standard 

errors of the mean. Cell density corresponds to the optical density measured at 600 nm. 

Experiments were repeated on 3 different days (trials 1-3). These correspond to the three 

experiments from which Figures 4B, C in the main text were generated.  

 



7 

 

 

Supplementary Figure 6: Final cell density vs initial fraction and time. Cells were 

grown for 23 hours in LB with 5 µg/mL of kanamycin, and 100 µg/mL of ampicillin. (A) Shows 

the dependence of the final cell density (OD600) on the initial resistant fraction at the end of the 

first day. The final cell density depends weakly on the initial resistant fraction. (B) A histogram 

of the final cell density at the end of the first day. (C) The saturated cultures were propagated at a 

dilution factor of 100x over multiple days. The final cell density does not change significantly 

with time. The blue error bars represent the standard deviation while the black error bars 

represent the standard error of the mean. Final cell density corresponds to the optical density 

measured at 600 nm. Data comes from the same experiment as used to generate Figure 1A in the 

main text. 
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Supplementary Figure 7: Difference equations obtained on consecutive days. The 

difference equation obtained on the first day (green squares) slightly overestimates the resistant 

fraction seen on consecutive days (black circles). Cultures were grown in LB with 5 µg/mL 

kanamycin, 100 µg/mL ampicillin at a dilution factor of 100x. 
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Supplementary Figure 8: Intra-day growth dynamics in ampicillin of bacterial 

populations containing both resistant and sensitive cells. Bacterial populations containing 

resistant and sensitive cells were grown in 200 µL of LB with specified concentrations of 

ampicillin. Every 30 to 60 minutes, 1 µL of each bacterial culture was transferred into 199 µL of 

PBS, and the sample was measured on the flow cytometer. Each measurement yielded the 

number of resistant and sensitive cells (red and blue lines in the insets), as well as the fraction of 

resistant cells (black lines) during one time point in the course of bacterial growth in the 

antibiotic.  

The data shows that at lower initial antibiotic concentrations and higher initial fractions 

of resistant cells, sensitive cells grow virtually unhindered by the antibiotic. In contrast, at higher 

antibiotic concentrations and lower initial fractions of resistant cells, the antibiotic can kill a 

significant fraction of the sensitive cells before it is inactivated. In addition, consistent with our 
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modeling assumptions, sensitive cells can recover and resume growth after experiencing cell 

death.  

The measurement at time t = 0 was carried at a higher cell density on the flow cytometer 

(different dilution into PBS), yielding cell counts that were artificially higher than the cell counts 

for t > 0. Consequently, we omitted the cell counts for t=0, but we did include the fraction of 

resistant cells since it is unaffected by the different cell density. 

The error bars on the fraction of resistant cells show the error associated with small cell 

numbers (approximated as ~sqrt(f(1-f)/N), where f is the fraction of resistant cells and N is the 

total number of cells). This error is less than 5% for most measurements (since N > 100 cells).  

When measuring the fraction of resistant cells continuously over the course of bacterial 

growth, rather than just at the initial and final times as is done elsewhere in this study, one must 

worry about additional sources of noise. One issue is that the fluorescence of sensitive cells 

decreases during the first few hours of growth, leading to overestimation of the fraction of 

resistant cells. In addition, it is possible that sensitive cells can still lyse in PBS if they were on 

the verge of lysing before being diluted into PBS. This means that the measured fraction of 

resistant cells may exhibit some dependence on the time elapsed between dilution into PBS and 

the subsequent measurement on the flow cytometer. Re-measurements of the same samples in 

PBS gave mostly the same fractions of resistant cells (i.e., within the shown error bars); 

however, a few of the fractions were off by ~10-15%. Nonetheless, most of the dynamics are 

dominated by significantly larger changes in fraction than can be caused by noise. 

Cultures were grown at 37ºC in a shaking incubator in the absence of kanamycin. 

Also, please see the discussion in Supplementary Figure 24 regarding the change in the 

equilibrium fractions. 
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Supplementary Figure 9: Growth dynamics in ampicillin of sensitive cells and 

resistant cells grown separately. Resistant and sensitive cells were grown at 37ºC in 5 mL of 

LB and 5 µg/mL of kanamycin with either 0 µg/mL or 100 µg/mL of ampicillin. Every 20 

minutes, the number of Colony Forming Units (CFUs), N, was obtained by plating cultures on 

LB-agar Petri dishes. (A) Sensitive cells exhibit a lag phase ~30-120 minutes, and die at a rate of 

~2.8/hr when ampicillin is present. (B) Resistant cells exhibit a lag phase of ~80-100 minutes, 

and grow at a rate of ~ 1.1/hr, regardless if grown either in the absence or presence of ampicillin. 

In modeling growth in the antibiotic, we took the lag time of both resistant and sensitive cells to 

be 1 hour long. The different markers correspond to different trials. No represents the number of 

CFUs at time 0 in each trial.  
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Supplementary Figure 10: Resistant cells in ampicillin. The growth of resistant cells is 

unaffected at the range of antibiotic concentrations probed in our experiments (up to ~200 

µg/mL). Resistant cells were inoculated at an initial cell density corresponding to a dilution of 

~1:10
5
 from saturation into a 96-well plate with 200 µL of LB supplemented with ampicillin. 

The plate was placed into a shaking incubator at 37ºC, with optical density measurements taken 

every ~15 minutes. This strain is equivalent to the one used in the main text except for its 

kanamycin resistance plasmid which encodes a yellow fluorescent protein instead of a cyan 

fluorescent protein. 
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Supplementary Figure 11: Sensitive cells grow faster than resistant cells in the 

absence of the antibiotic ampicillin. 

3 sensitive and 3 resistant cultures were grown from single colonies in 5 mL of LB with 

antibiotics at 37ºC for 23 hours. Each of the three saturated sensitive culture was mixed with one 

of the three saturated resistant cultures. The fraction of resistant cells in the mixed cultures was 

measured using flow cytometry (Day -1). The mixed cultures were then diluted by a factor of 

100x into a 96-well plate in which they were grown in 200 µL of LB with 5 µg/mL kanamycin 

for a day. The fraction of resistant cells in the saturated cultures grown in the 96-well plates was 

measured using flow cytometry (Day 0). Cultures were propagated for another day (Day 1) under 

the same growth conditions as in Day 0 (diluted by factor of 100x into 96-well plate with 200 µL 

of LB at 5 µg/mL kanamycin), and the fractions of resistant cells were measured again using 

flow cytometry. 

The relative fitness between the sensitive and resistant cells was calculated for each day 

of growth using the equation r = ln(NSf/NSi)/ln(NRf/NRi), where NSi, NSf, NRi, NRf are the initial 

sensitive cell density, final sensitive cell density, initial resistant cell density, and final resistant 

cell density, respectively. The densities of the subpopulations were determined by combining 

flow cytometry measurements (yielding fractions of each subpopulation) together with optical 
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density measurements at 600 nm (yielding total density of bacterial population). The initial 

densities correspond to those of the freshly inoculated culture, whereas the final densities 

correspond to those of the saturated culture (after a day of growth). For each culture, error bars in 

the relative fitness represent the standard error of the mean over multiple replicates. 

Importantly, we found that the relative fitness on Day -1 is an unreliable measure of the 

relative fitness between the two strains. Prior to being co-cultured together on Day -1, the two 

strains were grown separately in 5 mL of LB. We suspect that random differences between the 

growth histories of the two strains when grown separately lead to fluctuations in the relative 

fitness measured on Day -1. 

For the following days (Days 0 and 1), the two strains experienced the same growth 

histories, and the measurements of the relative fitness across different cultures yielded consistent 

results. Consequently, all experiments were carried out after co-culturing the two strains together 

for a day in the absence of ampicillin before using them to measure difference equation maps.  

The value of the relative fitness, r, used for modeling was the average of the relative 

fitness values across the three cultures obtained on Day 1 (r=1.15). 
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Supplementary Figure 12: Difference equation with a different plasmid. The 

evolutionary dynamics are not specific to the type of plasmid that encodes the β-lactamase gene. 

Shown are difference equations that were mapped for a resistant strain in which the resistance 

was carried by the pBR322 plasmid (New England Biolabs, Beverly, MA, identical to TEMwt). 

Unlike the resistance plasmid used in the main text, this plasmid does not encode a fluorescent 

protein. Quantitative differences are expected as hydrolysis rates, growth rates, lag times may 

vary between different plasmids; however, the qualitative features of the evolutionary dynamics 

remain robust; i.e., phenotypes have high fitness when rare, and for every ampicillin 

concentration, there is a characteristic fraction of resistant cells at equilibrium. Data was 

acquired in LB with 5 µg/mL of kanamycin at 100x dilution. 
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Supplementary Figure 13: Difference equation maps at different dilution factors. 

Each difference equation was measured on 3 different days. The 100x and 200x difference 

equations shown in the main text (Figure 3A, B) only include a subset of the data. Solid curves 

represent a single fit of the model to all experimental data. 
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Supplementary Figure 14: A fraction of resistant and sensitive cells maximizes 

population growth rate. Simulations indicate that the fraction that maximizes the population 

growth rate (the time to reach saturating cell density) corresponds neither to the equilibrium 

fraction nor to an entirely resistant population. Notably, at the equilibrium fraction, the 

population growth rate is not substantially lower than that of a purely resistant population. This 

simulation was carried for the 100 µg/mL ampicillin and 100x dilution factor condition. 
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Supplementary Figure 15: Oscillatory dynamics. Equilibrium points can be stable or 

unstable. As the antibiotic concentration decreases, the slope of the difference equation at the 

fixed point increases in magnitude, and the equilibrium points become unstable. For an unstable 

equilibrium point, the resistant fraction starts to oscillate about that fixed point. Shown are the 

results of simulations of the evolutionary dynamics over the course of 50 days. For each 

antibiotic concentration and dilution factor, the population was started at an initial resistant 

fraction slightly offset from the equilibrium fraction, and the first 10 days of simulation were 

disregarded.  (A) Shown are the mean resistant fraction (dark thick line, color), the standard 

deviation of the resistant fraction (lighter color) and the location of the fixed point (black dashed 

line). Note that for unstable fixed points, the mean fraction is slightly higher than the equilibrium 

fraction due to the asymmetric nature of the oscillations. (B) Shown is the standard deviat ion as a 

function of the ampicillin concentration. The size of the fluctuations is generally small (standard 

deviation lower than 0.1), making it difficult to tell apart the oscillations from experimental noise 

in this system. The parameters used in the simulations were acquired from fits to the 

experimental data (described in the main text). Parameter values are provided in the modeling 
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section of the Supplementary Materials. 
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Supplementary Figure 16: Selection for resistance in ampicillin and tazobactam. (A) 

While high concentrations of the inhibitor successfully kill the bacterial population, low and 

intermediate concentrations of the inhibitor accelerate the spread of resistant cells.  Heat maps 

showing (B) the final density of resistant subpopulation (blue is high density) and (C) the final 

density of entire bacterial population (white is high density) as a function of the antibiotic and 

inhibitor concentrations.  Subplot (A) corresponds to a slice of subplots (B) and (C) subplots at a 

fixed ampicillin concentration of 50 µg/mL. In these experiments, a saturated culture with ~10% 

resistant cells was diluted by a factor 100x into a medium of LB supplemented with ampicillin 

and tazobactam. After 23 hours of growth, the density of resistant and sensitive cells was 

measured by combining flow cytometry measurements with an optical density measurement at 

600 nm. No kanamycin was present in these experiments. 

Also, please see the discussion in Supplementary Figure 24 regarding the change in the 

equilibrium fractions. 
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Supplementary Figure 17: Difference equation maps in the presence of the inhibitor 

tazobactam. Each difference equation was measured on 3 different days. The data and analysis 

presented in the main text in Figures 4B, 4C use these difference equation maps. Data was 

collected at a dilution factor of 100x. Solid curves represent a single fit of the model to all 

experimental data. 
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Supplementary Figure 18: Selection for resistance may be possible at clinically 

relevant concentrations. Clinically, ampicillin is combined often with the beta-lactamase 

inhibitor sulbactam. Depending on how the drugs are administered, the peak serum concentration 

of ampicillin may be between 40 µg/mL – 150 µg/mL while that of sulbactam may be between 

10 µg/mL – 120 µg/mL (Foulds, 1986; Foulds et al, 1983; Bush, 1988). (A-C) Resistant cells 

spread at an accelerated rate in the lower concentration ranges of ampicillin/sulbactam while at 

the higher concentration ranges the growth of the bacterial population is inhibited. 

Although resistant cells proliferate across a range of clinically relevant concentrations in 

our experiments, we want to stress that the minimum inhibitory concentrations of 

ampicillin/sulbactam is expected to change with the microorganism, and with the initial cell 

density of the bacterial population. Moreover, the use of ampicillin together with sulbactam is 

clinically known to be effective against many bacterial infections. 

Subplot (B) shows a heat map of the final density of resistant subpopulation (blue is high 

density). Subplot (C) shows a heat map of the final density of entire bacterial population (white 

is high density) as a function of the antibiotic and inhibitor concentrations. Subplot (A) 

corresponds to a slice of subplots (B) and (C) at an ampicillin concentration of 50 µg/mL.  
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In these experiments, a saturated culture with ~10% resistant cells was diluted by a factor 

100x into a medium of LB supplemented with ampicillin and sulbactam. After 23 hours of 

growth, the density of resistant and sensitive cells was measured by combining flow cytometry 

measurements with an optical density measurement at 600 nm. No kanamycin was present in 

these experiments. 

Also, please see the discussion in Supplementary Figure 24 regarding the change in the 

equilibrium fractions. 
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Supplementary Figure 19: Effects of the cost of resistance on the equilibrium 

fraction and the time to reach equilibrium. (A) The equilibrium fraction depends only weakly 

on the cost of resistance. For example, if the cost of resistance (Δγ=γS-γR) decreases by 50% – 

which corresponds the relative growth rate (r=γS/γR) decreasing from 1.15 to 1.07 – the 

equilibrium fraction increases by ~8% (feq~0.43 →feq~0.47) for the 100 µg/mL ampicillin and 

100x dilution factor condition. (B) The time to reach equilibrium can change significantly with 

the cost of resistance. In this simulation, for each relative growth rate, the population was started 

at a resistant fraction of 0.99, and the time to reach a fraction within 0.1 of the equilibrium was 

determined. The simulation was carried out for the 100 µg/mL ampicillin and 100x dilution 

factor condition. As the cost of resistance approaches 0 (r=1), the time to reach equilibrium 

increases. Note that when the cost of resistance is precisely 0 (r=1), the equilibrium fraction 

becomes degenerate. In this case, as long as the antibiotic is cleared within the lag time, the 

fraction of resistant cells does not change since with r=1, the growth rates of resistant and 

sensitive cells are identical. Parameter values for the simulation are provided in the 

Supplementary Materials. 
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Supplementary Figure 20: Difference between bactericidal and bacteriostatic 

antibiotics. Time course and difference equation map for the death rate of sensitive cells set to 

(A) 2.8/hr vs. (B) 0/hr. The plots show that the killing of sensitive cells by the antibiotic is 

responsible for the overshoot of the fraction above the equilibrium fraction when starting at a 

low initial fraction of resistant cells and for the “V” of the difference equation maps. This occurs 

because below the equilibrium fraction, there are not enough resistant cells to inactivate the 

antibiotic before it starts to affect the growth of sensitive cells. By killing sensitive cells, a 

bactericidal antibiotic exerts stronger selection for resistant cells than a bacteriostatic antibiotic 

that just inhibits the growth of sensitive cells. Simulations were run for an antibiotic 

concentration of 100 µg/mL and a dilution factor of 100x. Other parameter values can be found 

in the modeling section of the Supplementary Materials. 
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Supplementary Figure 21: Non-monotonic behavior in piperacillin. (A) Difference 

equation map collected in the antibiotic piperacillin. This difference equation maps behaves in 

accordance with model expectations at low antibiotic concentrations. However, it deviates from 

predicted behavior at high concentrations of the antibiotic, in which the difference equation maps 

start to curve down at low initial fractions of resistant cells. (B) Final fraction of resistant cells as 

a function of the antibiotic concentration revealing non-monotonic selection for resistance with 

increasing antibiotic concentrations. The non-monotonic behavior is significant: the final 

resistant fraction reduces from nearly 1 at intermediate piperacillin concentrations to ~0.1 at high 

piperacillin concentrations, revealing nearly complete cancelation of selection for resistance at 

high antibiotic concentrations. For all shown data points, the cultures grew to the same saturation 

density. Subplot (B) is a cross section through subplot (A) corresponding to an initial fraction of 

resistant cells at ~4%. Data was acquired at a 100x dilution in an LB medium in the absence of 

kanamycin. 

One possible explanation for the deviation from our model and the non-monotonic 

behavior is that, at the higher antibiotic concentrations, resistant cells begin to lyse releasing β-
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lactamase enzymes into the extra-cellular space (Sykes & Matthew, 1976). Extracellularly these 

enzymes hydrolyze their antibiotic more quickly (higher substrate concentration), leading to the 

survival of more sensitive cells.  

 



28 

 

 

 

Supplementary Figure 22: Controls showing difference equations obtained with 

fluorescent markers swapped. The resistant and sensitive strains used in the main text 

expressed CFP and YFP, respectively. To show that the evolutionary dynamics were independent 

of any differential cost involved in expressing CFP vs. YFP, we created control strains in which 

we swapped the fluorescent markers in places. (A) Difference equation obtained with resistant 

and sensitive strains from the main text. (B) Difference equation obtained with CFP and YFP 

swapped. Data was acquired in LB with 5 µg/mL of kanamycin at 100x dilution. 
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Supplementary Figure 23: Addition of 5 µg/mL kanamycin does not significantly 

affect the evolutionary dynamics. Both resistant and sensitive cells carry a plasmid that 

encodes for fluorescence and kanamycin resistance. To make sure that this plasmid was not lost 

during multi-day experiments, a background concentration of 5 µg/mL of kanamycin was added. 

Kanamycin was used only as a precaution, and its absence or presence (at 5 µg/mL) did not 

affect the evolutionary dynamics. Difference equations were mapped for 4 different antibiotic 

concentrations in (A) no kanamycin or in (B) 5 µg/mL kanamycin. Data was acquired at 100x 

dilution. 
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Supplementary Figure 24: Population dynamics in different beta-lactam antibiotics. 

Examples of difference equation maps collected in the beta-lactam antibiotics (A) ampicillin and 

(B) carbenicillin. (C) Equilibrium fractions extracted from difference equation maps for the beta-

lactam antibiotics ampicillin, piperacillin, penicillin G and carbenicillin. Consistent with model 

prediction, the equilibrium fractions are approximately linear in the antibiotic concentration. 

Deviations from linearity can appear at low concentrations due to the non-zero Km of Michaelis-

Menten hydrolysis of the antibiotic (see main text for explanation). Black dashes lines represent 

the range over which a line was fit to the data to calculate the slope. (D) The values of the slopes 

of the equilibrium fraction vs. the antibiotic concentrations acquired at high antibiotic 

concentrations. The ratio between these slopes should be proportional to the inverse ratio of the 
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hydrolysis rates of these antibiotics. TEM-1 hydrolyzes the antibiotics ampicillin, penicillin G, 

piperacillin and carbenicillin with approximate kcats of 1200/s, 1100/s, 1000/s and 110/s, 

respectively (Petit et al, 1995). Hence, the model would predict that the slope of carbenicillin as 

compared to the other antibiotics should be about 10 times larger, which is close to experimental 

observations. Error bars only capture the error from the linear fit. 

We note that the equilibrium fractions for ampicillin are significantly different than those 

presented in the main text (the equilibrium fractions are off by a factor of ~2-3). The data for this 

figure (and for supplementary figures 8, 16, 18, and 21) was collected more than a year after the 

data presented everywhere else in the paper. We do not know what has caused this drift, but we 

have eliminated differences in the antibiotic stock, in strains or in protocol as possible 

explanations. The drift could be caused by other parameters that we do not normally control for 

(e.g., humidity, different filter for de-ionized water, batch-to-batch variations in LB). If anything, 

the equilibrium fractions here show that the sensitive strains can survive in even larger antibiotic 

concentrations than indicated in the main text. 

Data in subplots (A-D) was acquired at a 100x dilution in an LB medium in the absence 

of kanamycin. 
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2 DEFINITION OF PARAMETERS

1 Overview
Here, we present a model of bacterial growth in the antibiotic. We show that the way the equilibrium
fraction scales with the initial antibiotic concentration, Ai, and cell density, Ni, is independent of many as-
pects of bacterial growth in the antibiotic. As long as the antibiotic is inactivated according to Michaelis-
Menten kinetics, the equilibrium fraction scales approximately as feq ∝ (Ai +KM ln(Ai))/Ni.

Section (2) defines the parameters used in the models. Section (3) provides a summary of the an-
alytical expressions of the equilibrium fractions for different model variations. Section (4) shows how
various aspects of bacterial growth in the antibiotic are incorporated into the models. Two of the models
are solved in section (5). Finally, in section (6), we discuss the model used in the main text.

2 Definition of Parameters

Parameter Definition

γR growth rate of resistant cells

γS growth rate of sensitive cells

γD death rate of sensitive cells

∆γ γS− γR > 0

Vmax hydrolysis rate

KM Michaelis-Menten constant

Ai initial antibiotic concentration

MIC antibiotic concentration above which sensitive cells die

∆A Ai−MIC ≥ 0

fi initial resistant fraction

f f final resistant fraction

feq feq = fi = f f is the equilibrium fraction

NRi ≡ NR(0) initial number of resistant cells

NR f ≡ NR(τsat) final number of resistant cells

NSi ≡ NS(0) initial number of sensitive cells

NS f ≡ NS(τsat) final number of sensitive cells

Ni = NRi +NSi the initial number of both resistant and sensitive cells

Nsat = NR f +NS f saturation number of both resistant and sensitive cells

τR
lag for t < τlag resistant cells neither divide nor die

τS
lag for t < τlag sensitive cells neither divide nor die

2



3 ANALYTIC SOLUTIONS FOR THE EQUILIBRIUM FRACTION

Parameter Definition

τsat time at which saturation is reached

τb time at which the antibiotic is broken down

3 Analytic Solutions for the Equilibrium Fraction

# Lag Phase Cell Death Antibiotic Inactivation feq

1 7 τR
lag = τS

lag = 0 7 dA
dt =−VmaxNRi

∆A

VmaxNi
1

γR
ln(Nsat

Ni
)

∆γ
γS

2 7 τR
lag = τS

lag = 0 7 dA
dt =−VmaxNR(t) ∆A

VmaxNi{ 1
γR
[(Nsat

Ni
)

∆γ
γS −1]}

3 7 τR
lag = τS

lag = 0 7 dA
dt =−VmaxNR(t) A

A+KM

∆A+KM ln( Ai
MIC )

VmaxNi{ 1
γR
[(Nsat

Ni
)

∆γ
γS −1]}

4 7 τR
lag = τS

lag = 0 3 dA
dt =−VmaxNR(t) ∆A

VmaxNi{ 1
γR
[(Nsat

Ni
)

∆γ

γS+γD −1]}

5 3 τR
lag = τS

lag 6= 0 7 dA
dt =−VmaxNR(t) ∆A

VmaxNi{τR
lag+

1
γR
[(Nsat

Ni
)

∆γ
γS −1]}

6 3 τR
lag = τS

lag 6= 0 3 dA
dt =−VmaxNR(t) ∆A

VmaxNi{τlag+
1

γR
[(Nsat

Ni
)

∆γ

γS+γD −1]}

7 3 τR
lag = τS

lag 6= 0 3 dA
dt =−VmaxNR(t) A

A+KM

∆A+KM ln( Ai
MIC )

VmaxNi{τlag+
1

γR
[(Nsat

Ni
)

∆γ

γS+γD −1]}

8 3 τR
lag 6= τS

lag 3 dA
dt =−VmaxNR(t) A

A+KM

∆A+KM ln( Ai
MIC )

VmaxNi{τR
lag+

1
γR
[e

γRγD(τS
lag−τR

lag)
γS+γD (Nsat

Ni
)

∆γ

γS+γD −1]}

9 3 τR
lag 6= τS

lag 3 dA
dt =−VmaxNRi

A
A+KM

∆A+KM ln( Ai
MIC )

VmaxNi{
γSτR

lag+γDτS
lag

γS+γD
+ ∆γ

γR(γS+γD)
ln(Nsat

Ni
)}
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4 SUMMARY OF MODELS

4 Summary of Models
Here, we explain models 1, 4, and 8 in more detail, writing down the system of differential equations
that corresponds to each model. In all the models, we assume that cell growth ceases when the total cell
density reaches the saturation density (Nsat). Hence, if τsat corresponds to the time when NR+NS = Nsat ,
then for t ≥ τsat :

dNR

dt
= 0

dNS

dt
= 0

4.1 Model 1
Here, resistant cells divide at a characteristic rate of γR. Sensitive cells divide at a rate of γS when the
antibiotic concentration, A, is below their MIC value. When the antibiotic concentration is above their
MIC, sensitive cells do not divide. Antibiotic is broken down at constant rate proportional to the initial
number of resistant cells (NRi = fRNi).

dNR

dt
= γRNR

dNS

dt
=

{
γSNS A < MIC
0 A > MIC

dA
dt

= −VmaxNRi

4.2 Model 4
Next, we incorporate cell death into the model, saying that for antibiotic concentration above the MIC of
sensitive cells, sensitive cells die at a rate −γD. This gives the set of equations:

dNR

dt
= γRNR

dNS

dt
=

{
γSNS A < MIC
−γDNS A > MIC

dA
dt

= −VmaxNR

Note that in this example, antibiotic breakdown at time t is proportional to the number of resistant
cells at time t (rather than the initial number of resistant cells).
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4.3 Model 7 5 SAMPLE DERIVATION OF EQUILIBRIUM FRACTIONS

4.3 Model 7
To more realistically model bacterial growth in the antibiotic, we can use Michaelis-Menten Kinetics for
antibiotic inactivation; i.e., dA

dt =−VmaxNRi
A

A+KM
. In addition, we can introduce a lag phase during which

cells neither grow nor die, giving:
For t < τlag:

dNR

dt
= 0

dNS

dt
= 0

dA
dt

= −VmaxNRi
A

A+KM

For t ≥ τlag:

dNR

dt
= γRNR

dNS

dt
=

{
γSNS A < MIC
−γDNS A≥MIC

dA
dt

= −VmaxNR
A

A+KM

Whether it is necessary to incorporate Michaelis-Menten Kinetics or not depends on the values of
KM and MIC . If KM�MIC , then antibiotic breakdown proceeds essentially at saturation for antibiotic
concentrations above the MIC.

5 Sample Derivation of Equilibrium Fractions
The models presented thus far describe how bacteria grow in the antibiotic during the course of a single
day. These models provide a way to investigate the evolutionary dynamics between resistant and sensitive
cells by allowing one to determine how the final resistant fraction, f f , after 23 hours of growth depends
on the initial resistant fraction, fi, antibiotic concentration, Ai, and cell density, Ni. It is straightforward
to integrate these models numerically to find the required dependence; however, it is challenging to gain
intuition from numerical solutions. Fortunately, we can obtain an exact analytical expression for the
dependence of equilibrium resistant fraction ( fi = f f = feq) on the initial antibiotic concentration and
cell density.

We will first derive two useful relations between the initial and final cell densities that hold at the
equilibrium fraction, and then proceed to use these relations to derive an analytical expression for the
equilibrium fraction.

5.1 Equilibrium Relations
At equilibrium, f f = fi. This is equivalent to saying that:

NR f

Nsat
=

NRi

Ni

5



5.2 Solving Model 1 5 SAMPLE DERIVATION OF EQUILIBRIUM FRACTIONS

Therefore,

NR f

NRi
=

Nsat

Ni
(5.1)

If we use the same logic as above but start from the expression1− f f = 1− fi, we get:

NS f

NSi
=

Nsat

Ni
(5.2)

5.2 Solving Model 1
Model 1 (see 4.1) ignores lag and cell death, and it assumes that antibiotic hydrolysis proceeds at a
constant rate proportional to the initial cell density of resistant cells. Due to its simplicity, we can solve
this model without doing much algebra.

5.2.1 Step 1: Solve for the time when the antibiotic concentration drops below the MIC

dA
dt

=−VmaxNRi

∆A
τb

=VmaxNRi

τb =
∆A

VmaxNRi

5.2.2 Step 2: Solve for the saturation time

Let’s start with the equation (5.1):

NR f

NRi
=

Nsat

Ni

For this simple model, the number of resistant cells increases with time according to the equation:
NR f = NRieγRτsat ; therefore, NR f

NRi
= eγRτsat , so:

eγRτsat =
Nsat

Ni
,

giving:

τsat =
1
γR

ln(
Nsat

Ni
)
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5.3 Solving Model 7 5 SAMPLE DERIVATION OF EQUILIBRIUM FRACTIONS

5.2.3 Step 3: Solve for the equilibrium fraction
NS f

NSi
=

Nsat

Ni
(5.2)

Since the sensitive cells do not start growing until the antibiotic is broken down, the number of sensi-
tive cells increases with time according to the equation: NS f = NSieγS(τsat−τb); therefore, NS f

NSi
= eγS(τsat−τb).

Combining this with the previous expression, we get:

eγS(τsat−τb) =
Nsat

Ni

τsat− τb =
1
γS

ln(
Nsat

Ni
)

Next, we substitute in the expressions we got for τsat and τb:

1
γR

ln(
Nsat

N0
)− ∆A

VmaxNRi
=

1
γS

ln(
Nsat

Ni
)

∆A
VmaxNRi

= (
1
γR
− 1

γS
)ln(

Nsat

Ni
)

∆A
VmaxNi feq

=
1
γR

ln(
Nsat

Ni
)

∆γ

γS

feq =
∆A

VmaxNi
1
γR

ln(Nsat
Ni

)
∆γ

γS

5.3 Solving Model 7
Model 7 (see 4.3) incorporates a few more features, so the algebra is a bit messier, but the same general
procedure applies.

5.3.1 Step 1: Solve for the time when the antibiotic concentration drops below the MIC

The antibiotic is inactivated according to Michaelis-Menten kinetics:

dA
dt

=−VmaxNR
A

A+KM
,

where NR(t < τlag) = NRi and NR(τlag < t < τsat) = NRieγR(t−τsat). We need to solve this differential
equation to find the time, τb, at which the antibiotic concentration drops below the MIC of sensitive cells.

A+KM

A
dA =−VmaxNRdt

ˆ
(1+

KM

A
)dA =−

ˆ
VmaxNRdt

(A+KM ln(A))|MIC
Ai

=−
ˆ

τb

0
VmaxNRdt
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5.3 Solving Model 7 5 SAMPLE DERIVATION OF EQUILIBRIUM FRACTIONS

−∆A+KM ln(
MIC

Ai
) =−VmaxNRi(τlag +

1
γR

eγR(t−τlag)|τb
τlag)

∆A+KM ln(
Ai

MIC
) =VmaxNRi(τlag +

1
γR

(eγR(τb−τlag)−1))

∆A+KM ln( Ai
MIC)

VmaxNRi
= τlag +

1
γR

(eγR(τb−τlag)−1)

Let’s introduce τ∗b = τ0
b + τ1

b , where τ0
b = ∆A

VmaxNRi
and τ1

b =
KM ln( Ai

MIC )
VmaxNRi

. Then,

τ
∗
b = τlag +

1
γR

(eγR(τb−τlag)−1)

1
γR

(eγR(τb−τlag)−1) = τ
∗
b − τlag

eγR(τb−τlag)−1 = γR(τ
∗
b − τlag)

γR(τb− τlag) = ln(1+ γR(τ
∗
b − τlag))

τb = τlag +
1
γR

ln(1+ γR(τ
∗
b − τlag))

5.3.2 Step 2: Solve for the saturation time
NR f

NRi
=

Nsat

Ni
(5.1)

eγR(τsat−τlag) =
Nsat

Ni

γR(τsat− τlag) = ln(
Nsat

Ni
)

τsat = τlag +
1
γR

ln(
Nsat

Ni
)

5.3.3 Step 3: Solve for the equilibrium fraction
NS f

NSi
=

Nsat

Ni
(5.2)

eγS(τsat−τb)−γD(τb−τlag) =
Nsat

Ni

γS(τsat− τb)− γD(τb− τlag) = ln(
Nsat

Ni
)

γSτsat + γDτlag− (γS + γD)τb = ln(
Nsat

Ni
)

γSτlag +
γS

γR
ln(

Nsat

Ni
)+ γDτlag− (γS + γD)τb = ln(

Nsat

Ni
)
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6 FITTING EXPERIMENTAL DATA

(γS + γD)τlag− (γS + γD)τb = (1− γS

γR
) ln(

Nsat

Ni
)

(γS + γD)τlag− (γS + γD)(τlag +
1
γR

ln(1+ γR(τ
∗
b − τlag))) = (1− γS

γR
) ln(

Nsat

Ni
)

− ln(1+ γR(τ
∗
b − τlag)) =

γR− γS

γS + γD
ln(

Nsat

Ni
)

1+ γR(τ
∗
b − τlag) = (

Nsat

Ni
)
− γR−γS

γS+γD

γRτ
∗
b = γRτlag +(

Nsat

Ni
)

γS−γR
γS+γD −1

γR
∆A+KM ln( Ai

MIC)

VmaxNRi
= γRτlag +(

Nsat

Ni
)

γS−γR
γS+γD −1

feq =
∆A+KM ln( Ai

MIC)

VmaxNi{τlag +
1
γR
[(Nsat

Ni
)

γS−γR
γS+γD −1]}

(5.3)

6 Fitting Experimental Data
To fit the experimental data, we used model #7 which incorporates cell death, Michaelis-Menten hydrol-
ysis and lag time (see section 4.3). We fit the equilibrium fractions (Figure 3C) to the full analytical
solution of this model (Eq. 5.3), acquiring estimates for the parameters MIC, Vmax, KM.

We then plugged the values of MIC, Vmax, KM into the differential equations describing model #7 (see
section 4.3) and integrated the differential equations numerically to recapitulate the difference equation
maps (Figure 3A, B).

To fit the data with the tazobactam inhibitor (Figure 4C), we used equation 5.3, modifying KM →
Ke f f = KM · (1+[I]/KI). We fit the data using a single free parameter (Ki). (Other parameter values were
held fixed. The values of MIC, Vmax and Km were set to those acquired in the fit of Figure 3C.)

6.1 Qualitative Behavior of the Equilibrium Fraction
The analytical expression of the equilibrium fraction is (Eq. 5.3):

feq =
∆A+KM ln( Ai

MIC)

VmaxNi{τlag +
1
γR
[(Nsat

Ni
)

∆γ

γS+γD −1]}

Because in our experiments Ni varies by less than an order of magnitude and ∆γ

γS+γD
� 1, the equilib-

rium fraction can be approximated by the expression:

feq ≈C
∆A+KM ln( Ai

MIC)

VmaxNi
, (6.1)

where C = 1

τlag+
1

γR
[(Nsat

Ni
)

∆γ

γS+γD −1]
.
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6.2 Parameter Values for Simulations 6 FITTING EXPERIMENTAL DATA

Using the numbers in section (6.2), C works out to be ≈ 0.84 hr−1 for a dilution factor of 100x, and
≈ 0.78 hr−1 for a dilution factor of 800x. This amounts to less than a 10% change in C, which means that
C can be treated essentially as a constant. With C a constant, equation 6.1 implies that the equilibrium
fraction ( feq) scales approximately inversly with the initial cell density (Ni).

Furthermore, for initial antibiotic concentrations higher than the dissociation constant (Ai� KM), the
contribution of the logarithmic term becomes small and the expression simplifies to:

feq ≈C
∆A

VmaxNi

This relationship indicates that plotting the number of resistant cells at equilibrium ( fRi) vs. the initial
antibiotic concentration (Ai) should yield a line with a slope of ( C

Vmax
):

fRi = feq×Ni ≈
C

Vmax
∆A =

C
Vmax

Ai−
C

Vmax
MIC

6.2 Parameter Values for Simulations
The following table lists the parameters used for simulations (see supplementary figures for details):

Parameter Meaning Value Source

γR growth rate of resistant cells 1.1hr−1 measured experimentally

γS
γR

relative fitness of sensitive cells 1.15 measured experimentally

γD death rate of sensitive cells 2.8hr−1 measured experimentally

τlag lag time ∼ 1hr measured experimentally1

Nsat
cell density at saturation (after 23

hours of growth)
1.2×107 cells

µL measured experimentally

Vmax hydrolysis rate ∼ 106 molecules
cell×second determined from fit

KM
Michaelis-Menten constant for

ampicillin inactivation
6.7 µg

mL determined from fit

KI
dissociation constant for

tazobactam-enzyme complex
4.56 ng

mL determined from fit

MIC minimum inhibitory concentration
of sensitive cells

∼ 1.1 µg
mL determined from fit

1The lag time shows some variability. For simplicity, we took it to be 1 hour. Changing the value of the lag time mainly
changes the fit value for Vmax, but it hardly affects the dynamics.
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