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Microbes can be readily cultured and their genomes can be

easily manipulated. For these reasons, laboratory systems of

unicellular organisms are increasingly used to develop and test

theories about biological constraints, which manifest

themselves at different levels of biological organization, from

optimal gene-expression levels to complex individual and

social behaviors. The quantitative description of biological

constraints has recently advanced in several areas, such as the

formulation of global laws governing the entire economy of a

cell, the direct experimental measurement of the trade-offs

leading to optimal gene expression, the description of naturally

occurring fitness landscapes, and the appreciation of the

requirements for a stable bacterial ecosystem.
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Introduction
Living organisms are optimized by evolution to survive

and reproduce. Optimization targets all levels of bio-

logical organization at once, from elementary biomole-

cules to large anatomical features, from the expression

levels of single genes to complex individual and social

behaviors. The complex interplay of physical, chemical,

biological, and ecological constraints does not guarantee

that absolute optima are achieved by the evolutionary

process, and makes the design of optimal organisms hard

to predict from first principles [1–3]. The evolutionary

dynamics itself introduces further complications: for

instance, finite populations can accumulate deleterious

mutations [4], and species which are not the fittest may

nevertheless prevail if they are more tolerant to mutations

(survival of the flattest versus survival of the fittest) [5].

Moreover, since no organism can be optimal in every

environment, trade-offs are imposed on the development

and maintenance of any structure and function in living

systems. Microbes are ideal experimental systems to
www.sciencedirect.com 
develop and test theories about optimality, trade-offs,

and constraints in biology. The relative ease in manip-

ulating microbial genomes and fast reproduction rates

allows experimentalists to generate mutants with the

desired features, to measure their costs and benefits,

and to follow the evolutionary dynamics for thousands

of generations [6].

Metabolic constraints
The common observation that the growth rate of a cell is

inversely correlated with its resistance to stress [7]

suggests the existence of a trade-off between growth

and repair. More broadly, the growth rate may affect

the entire economy of a cell through system-level con-

straints. An example of this effect is the up to 10-fold

variations in the production rates of constitutively

expressed genes during different growth phases [8].

Eventually, nonlinearities in the growth-rate/gene-

expression feedback may even lead to bistable growth

[9] and possibly cause some cells to enter a dormant state

[8]. Growth-rate dependent global constraints have

recently been expressed as simple linear relations invol-

ving the expression levels of different classes of proteins

(ribosomal, growth-rate dependent, growth-rate indepen-

dent, and unnecessary) [10��,11,12].

The macroscopic description of metabolism based on

growth rates is complemented by the detailed study of

metabolic constraints and the optimization of metabolic

fluxes to maximize biomass production [13,14]. These

methods have been formalized into flux balance models

describing all the chemical reactions in a cell [15]. Even

more comprehensive models account also for the costs

and benefits of enzyme synthesis [16] to describe, for

instance, the switch between efficient respiration in

nutrient-poor environments and inefficient fermentation

in nutrient-rich environments [17].

Trade-offs and gene regulation
One of the primary roles of gene regulation in microbes is

to modulate metabolic fluxes and to ensure that high

growth rates can be achieved in favorable environmental

conditions. A common synthetic technique to character-

ize cellular responses is then to decouple a response in

gene expression from its triggering signals. Poelwijk et al.
[18��] cleverly improved on previous experiments [19]

measuring the costs and benefits of the lac system in

Escherichia coli by decoupling induction and metabolic

activity. The cost of the lac operon expression has been

measured by tuning protein synthesis with an inducer

which cannot be metabolized, whereas the benefits of

expression have been measured with a metabolite which
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The geometry of fitness landscapes. (a) Example of an experimentally

mapped four-dimensional phenotypic landscape describing the

effectiveness (measured as MIC, Minimum Inhibitory Concentration) of a

beta-lactamase enzyme in hydrolyzing the antibiotic cefotaxime [27,36].

Every circle represents a genotype for which each of the four mutations

can be absent (white wedge) or present (orange wedge). The blue arrows

indicate the selective pressure to acquire mutations which increase the

MIC. The landscape in this example is rugged, meaning that some

mutations can be beneficial or deleterious depending on the genetic

background in which they appear. The landscape is nevertheless single-

peaked. (b) An example of sign epistasis on a two-dimensional

landscape. Whereas starting from a wild type genotype (ab) the

combined fitness effect of two mutations (AB) is beneficial, the effect of

only one of the two mutations (either A or B) is deleterious. For this

reason the evolutionary dynamics is not guaranteed to find the global

maximum of fitness ( fAB) and it might remain stuck for long times in a

suboptimal local maximum ( fab).
cannot induce. Evolutionary experiments in environ-

ments containing different concentrations of inducer

and metabolite have confirmed how a theoretical costs/

benefits analysis can predict the result of adaptation in

each environment. Similarly, by decoupling glucose sen-

sing and glucose uptake in yeast, it has been shown how

the growth rate of yeast cells depends separately on these

two variables. This is because sensing high concen-

trations of extracellular glucose triggers the synthesis of

extra glucose-processing machinery and imposes a fitness

burden if glucose import is less than expected [20]. When

a regulatory system is not present, it can be engineered

using synthetic techniques. As an example, in yeast, low

levels of noise in the expression of a glutamate synthase

provide a fitness advantage in limiting concentrations of

ammonia, whereas noisy expression increases fitness at

toxic levels of ammonia. A mutant with the ability to tune

noise in response to a signaling molecule has been built,

and its evolutionary advantage in fluctuating environ-

ments over its non-regulated wild type competitors has

been established [21].

Fitness landscapes and evolutionary
accessibility
Gene regulation confers a fitness advantage when the

time scale of the environmental fluctuation is shorter than

a few hundred generations [22,23]. If the environment

changes much more slowly, however, regulatory functions

are typically lost, according to a ‘use it or lose it’ principle

[24,25] and the optimal expression level is fixed through

genetic mutations. An example of this transition between

regulation on cellular time-scales to adaptation on evol-

utionary time-scales has been repeatably observed in

laboratory populations of yeast cells: when a selective

pressure favors fast growth, a trade-off between growth

rate and mating efficiency causes quick silencing and an

eventual loss of 23 genes in the mating pathway to

achieve a 2% growth rate advantage [26]. Fitness land-

scapes assign a fitness value to each genotype or pheno-

type (in a specified environment) and they represent a

geometric setting to study the evolutionary process con-

necting a low-fitness ancestral organism to its high-fitness

descendants (Figure 1a). Whereas evolution can proceed

rapidly along adaptive paths of increasingly fit organisms

[27–29], real populations do cross moderately shallow-

fitness valleys under a variety of conditions: if the fitness

deficit of the intermediates is small enough [30], if the

mutation rate is large enough, if the available time is long

enough or by exploiting small effective population sizes

(e.g. at the frontier of a range expansion [31]).

Synthetic approaches are increasingly applied to delineate

naturally occurring landscapes by constructing all the

possible genetic intermediates between ancestral organisms

and their evolved counterparts [27,28,32,33�,34�,
35,36,37�,38��]. Although such experimental studies are

necessarily limited by the exponential number of possible
Current Opinion in Chemical Biology 2012, 16:323–328 
intermediates, various kinds of landscapes have been stu-

died. Notably, the mapping involved in the definition of a

landscape is not necessarily one-to-one: different genotypes

can converge to the same phenotype [39] and, in case of

multistable gene expression [40�], the same genotype can

produce different phenotypes. Moreover, even if genotype-

to-phenotype landscapes may be approximately linear, the

nonlinearity of the furthermapping between phenotype and

growth rate leads to a nonlinearity of the final genotype-to-

fitness landscapes [32], which often display epistatic effects

leading to diminishing returns [33�,34�,35].

Starting from the geometric properties of experimentally

measured landscapes, the properties of the evolutionary

dynamics can be predicted or, vice versa, some properties

of naturally occurring fitness landscapes can be inferred

by observing the evolutionary dynamics. Especially

relevant properties of fitness landscapes are the ones

which do not depend on how phenotypes or growth rates

are scaled. Examples of these topological features are the

number of accessible paths leading to a fitness maximum,

the number of peaks in a landscape, and the presence of

sign epistasis (Figure 1b), a necessary condition for the

generation of multi-peaked landscapes [41]. Sign epis-

tasis has been further shown to reduce the number of

accessible evolutionary paths [42], to increase their

length by imposing genetic detours [43], to increase
www.sciencedirect.com



Understanding biological constraints Velenich and Gore 325

Figure 2

(a)

(b)

(c) Cooperator Cheater

Glucose diffusion

Metabolite diffusion

Benefits

Lactose import
Self-serving metabolism

Mutualist A Mutualist B

Invertase secretion

Metabolite secretion
Metabolite secretion

LacY expression

Costs

Current Opinion in Chemical Biology

Cost/benefit analyses at multiple scales. (a) Single cells quickly adapt to

balance the costs associated with the expression of a gene and the

benefits deriving from the gene products in order to achieve optimal

growth rates [18��]. (b) Bacterial communities are often based on

mutualistic interactions. A-cells might pay a cost so that B-cells can

benefit from it. In turn, A-cells indirectly benefit from the success of B-

cells. (c) Despite the existence of cells which do not cooperate,

cooperative behaviors can still be maintained [57] if cooperator cells

have preferential access to a public good (e.g. if a diffusive dynamics

ensures that producers are also exposed to higher concentrations of the

common good). Quantitative details of the costs and benefits, together

with the spatial [52] and temporal [50,53,55] structures of the

interactions are often crucial for the evolutionary stability of these social

interactions.
the repeatability of evolution [44], and to interfere with

its reversibility [36,45].

Notably, the biochemical constraints encoded by sign

epistasis can also be exploited to encode biological func-

tions. This is highlighted in a landscape describing the

activity of a lac promoter as a function of mutations in the

lac repressor and in its operator [37�]. Each repressor/

operator pair can be interpreted as a key-lock system

and the fact that the landscape is multi-peaked (due to

sign epistasis) indicates that a different key-lock system

[46] can be generated with a few mutations in the repressor

and a few compensatory mutations in the operator. Novel

regulatory functions can indeed evolve with surprising

rapidity [38��,47]. In [38��], a lac promoter controlled a

synthetic operon for the simultaneous expression of two

enzymes in a laboratory population of E. coli. High expres-

sion levels of the operon conferred higher fitness in

environment A and low fitness in environment B. While

alternating between the two environments, the exper-

imenters added an inducer molecule only in environment

B, so that the operon was highly expressed when low

expression would have been optimal and repressed when

high expression would have been optimal. After only three

rounds of mutagenesis and competitive growth, the logic of

regulation in the bacterial population was reversed, so that

the inducer molecule had effectively become an inhibitor.

Surprisingly, only three key mutations in the lac repressor

protein were necessary to develop this new mode of

regulation [38��,48].

Synthetic ecosystems
Natural extensions of the formalism used to describe

constraints and trade-offs at the single-cell level

(Figure 2a) have recently been applied to small synthetic

ecosystems, where each species can be considered as a

module with specific metabolic inputs and outputs [49].

As a simple proof of principle, two variants of a yeast strain

have been built, each overproducing an amino acid

essential for the other strain (Figure 2b). In an environ-

ment without the two amino acids the two strains were

obligate cooperators [50] and, in some conditions, they

managed to coexist. In a similar experiment with E. coli,
all possible pairing of 46 auxotrophic strains have been

explored. In �17% of the cases, the two strains were able

to provide each others’ essential nutrients and survive in

environments which would have killed each of them

separately [51]. Stable cooperation in synthetic ecosys-

tems which did not coevolve is not guaranteed. In fact, in

well-mixed conditions, asymmetries in growth rates,

different tolerance to insults such as starvation or anti-

biotics and delays in the release of metabolites often

result in the rapid rise of one strain, followed by the

collapse of the whole population [52]. However, since

these mutualistic interactions are based on the exchange

of diffusible molecules, spatially structured environments
www.sciencedirect.com 
(typically with length scales in the hundreds of microns)

may enable the existence of synthetically assembled

multispecies microbial communities [52].

Alternatively, even in spatially unstructured environ-

ments, the temporal structure of a population can play

a relevant role in the coexistence of multiple species.

Starting from the same ancestral E. coli strain, the season-

ality induced by daily serial dilutions promoted the coe-

volution of two strains, each one occupying its own

temporal niche: early in the day a fast-growing strain

feasted on fresh medium; later in the day a scavenger

strain thrived by cannibalizing the first strain [53].

Because of the complexity of even the smallest laboratory

ecosystems discussed above, microbial communities are a

standing challenge for synthetic and systems biology.
Current Opinion in Chemical Biology 2012, 16:323–328
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Notably, about 1/3 of the genes in E. coli still have no

known function and a fraction of those genes might be

related to the microbes’ social life. Even more strikingly,

the majority of microbial species cannot be cultured in

isolation and much of the uncharted territory in the

microbial world might remain unexplored until the net-

works of ties and constraints in microbial communities are

understood [54].

The spread of cooperation
In microbial consortia each organism follows a selfish

strategy, exploiting other organisms, preying on them

[55] or synthesizing toxins for chemical warfare [56].

However, cooperative and altruistic behaviors are often

observed in nature, in apparent contrast with the evol-

ution of selfish genes. The emergence and, even more

importantly, the persistence of cooperative behaviors can

be investigated using synthetic techniques which allow

scientists to manipulate microbial strategies. Commu-

nities of engineered microbes become then a tool to

understand ecosystems beyond the microbiology labora-

tory.

Yeast cells grown on sucrose provide a model system to

study cooperative behaviors [57,58]. Cooperator cells pay

an individual cost to hydrolyze sucrose, producing glucose

as a common good which diffuses in the medium

(Figure 2c). Cheater cells, instead, are engineered to take

advantage of the glucose in the medium without paying

the cost for its production. Cheater cells can readily

invade a population of cooperators and spread. Surpris-

ingly, however, even in a well-mixed environment it has

been shown that coexistence is possible [57]. Although

cooperators are always exploited by cheaters, cooperators

can survive by having preferential access to the common

good they produce, and fare relatively well when the

common good is scarce. Spatially structured populations

further promote cooperation [59,60]: since a common

good typically diffuse in the environment, local subcom-

munities which happen to be rich in cooperators also

become privileged recipients of the common good and

grow faster, so that the overall fraction of cooperators

increases. This is the essence of the Simpson’s paradox,

which recent experiments on engineered E. coli have

explicitly demonstrated [61]. To further emphasize the

importance of laboratory models for a thorough under-

standing of natural ecosystems, Chuang et al. [62�] used a

simple bacterial system to demonstrate that costs and

benefits can be nonlinear functions of the population

structure, and that costs and benefits measured at the

cell level are not simply related to the same parameters

for the whole population.

Conclusion
We briefly reviewed recent experiments and theoretical

work to understand the structure of metabolic, regulatory,

evolutionary, and social constraints. Despite considerable
Current Opinion in Chemical Biology 2012, 16:323–328 
effort, these pioneering studies are partial or isolated

results, providing mostly anecdotal evidence. Encoura-

gingly, there is a trend of ever cheaper and more wide-

spread use of synthetic biology tools to read and write

genomes, and of biophysics techniques to quantify the

behavior of living cells. This trend is enabling the acqui-

sition of an unprecedented amount of data [63] and of

aggressive hypothesis testing. Independent studies on a

variety of systems are rapidly accumulating: the generic

features of fitness landscapes [64] will reveal the con-

straints of evolution as a stochastic optimization process,

whereas the emerging motifs in the networks of inter-

actions within microbial communities will soon have a

direct impact on biotechnology and human health.
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1. Pérez-Escudero A, Rivera-Alba M, de Polavieja GG: Structure of
deviation from optimality in biological systems. Proc Natl Acad
Sci 2009, 106:20544-20549.

2. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR,
Sethna JP: Universally sloppy parameters sensitivities in
systems biology models. PLoS Comput Biol 2007, 3:e189.

3. Daniels BC, Chen YJ, Sethna JP, Gutenkrust RN, Myers CR:
Sloppiness, robustness and evolvability in systems biology.
Curr Opin Biotechnol 2008, 19:389-395.

4. Fernández A, Lynch M: Non-adaptive origins of interactome
complexity. Nature 2011, 474:502-505.

5. Beardmore RE, Gudelj I, Lipson DA, Hurst LD: Metabolic trade-
offs and the maintenance of the fittest and the flattest. Nature
2011, 472:342-346.

6. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D,
Lenski RE, Kim JF: Genome evolution and adaptation in a long-
term experiment with Escherichia coli. Nature 2009,
461:1243-1247.
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