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Cells can switch between individual and collective behavior by tuning their communication.
Our daily decisions are influenced by the

people around us. We follow their advice,

orders, opinions, or trends. We also

convey information to others and influ-

ence their decisions, e.g., by persuading

them or setting an example. Thus, we

are sensing the social situation around

us and also influencing it at the same

time. We form a continuous system with

the society: our personal opinions, atti-

tudes, and decisions are coupled to those

of the society we live in. Cells in organ-

isms, microbes in populations, or organ-

isms in ecosystems face a similar situa-

tion. They are usually not isolated but

exist in a tissue, a population, or an

ecosystem. They are impacted by the de-

cisions of others in this ‘‘society’’ as much

as they influence it.

In this issue, Maire and Youk describe

what it means for an individual cell to be

part of such a ‘‘cellular society’’ (Maire

and Youk, 2015). They simulate the

behavior of many cells, arranged on a

grid, that are able to produce a diffusive

chemical signal. This substance can be

sensed by the cells and triggers them to

also produce the same chemical signal

(Youk and Lim, 2014). The development

of the communicating cell population is

simulated with a cellular automaton

model. Figure 1 shows a similar simulation

but with five different cell states, each

state producing a specific signal. It turns

out that existing in such a ‘‘society’’ leads

to the emergence of interesting new prop-

erties: the neighborhood of a cell strongly

influences which state the cell exists in. A

single cell is more likely to switch into

the state that is prevalent in its local

environment. In this way, individuals can

be coupled in their behavior and form a

cellular collective (Figure 1B).

Cells have to struggle with many prob-

lems. Some of them may be best solved

on the individual level, but others are best
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solvedasacollective.Therefore, it is useful

for individuals in a social environment to

choose the degree to which they act as in-

dividuals versus engaging in collectives.

Maire and Youk offer an interesting

explanation for how the balance between

individual and collective states can be

controlled. Cells that communicate by

sensing and secreting the same molecule

can ‘‘decide’’ the degree to which they

want to be part of a ‘‘society’’ by varying

the effective range over which this

communication takes place. In particular,

the cells can control how far the signal

molecules diffuse before degrading. For

very short-range communication, cells

are unable to communicate with others

and are basically isolated from the soci-

ety. However, they can still sense their

own chemical signal; this allows them to

stabilize their individual physiological

states. This circumstance results in signif-

icant heterogeneity within the population

(Figures 1A and 1B, left). Increasing the

range of communication allows cells to

share information with an increasing num-

ber of other cells. This leads to cellular

collectives of increasing size (Figures 1A

and 1B, middle and right).

The tuning of social behavior has direct

consequences. A high degree of individu-

ality causes a high degree of physiological

heterogeneity in a population of cells

(Figures 1A and 1B, left). This increases

the likelihood for at least some cells to

be optimally prepared for unexpected

events (bet hedging). Thus, T cells exist

in an enormous variety, each responding

to a different antigen. This variety maxi-

mizes the probability that the immune

system will be able to identify a new path-

ogen. Upon contact with the right antigen,

the corresponding T cell has to proliferate,

which is supported by producing and self-

sensing the samemolecules (Meuer et al.,

1984).
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Moreover, individuality splits the sys-

tem into many independent working cells.

In such a population, local stress stays

local and cannot spread through the

whole population: the cellular modularity

increases resistance toward external dis-

turbances (Figures 1B and 1C, left) (Albert

et al., 2000).

On the other hand, forming collectives

allows individuals to achieve goals that

they could not on their own. It allows the

individuals to start concerted actions,

bundle their forces, and solve problems

as a group, such as the production of

public goods, collective defense, or the

sharing of labor. For example, slime

molds under starvation start to move to-

ward each other guided by chemical

communication and form multicellular

fruiting bodies that allow them to more

effectively spread their spores (Camazine,

2003).

During a collective action, the individual

cell completely follows the collective and

fulfills a specific task in it. In order to

make many individuals act in the same

way, a consensus has to be found (Con-

radt and Roper, 2003). Telling each other

the cellular state by communication en-

ables exactly this consensus finding. The

individual cell within a population senses

the averaged signal from the other cells

around it. Making a decision based on

this neighborhood average means that

the individual cell follows an averaged

state of the population. A well-known

real-world example is quorum sensing,

in which bacteria switch on certain genes

only when the cell density (an average

value) has reached a certain level (Miller

and Bassler, 2001).

Shifting from individual to collective

behavior changes not only the decision

making of a cell, but also how it is recog-

nizing its environment. Because of their

limited size, individual cells can only
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Figure 1. Cellular Automaton Model of Communicating Cells Arranged on a Grid
(A) The cells communicate by secreting and sensing chemical signals, whereas every phenotypical state has a different signal molecule. Cells switch into
the phenotypical state of which they sense the highest signal concentration. For a small communication range (e.g., fast degradation compared to diffusion), the
cells only sense their own signal and stay in their original state. Increasing the range of communication causes them to be more and more influenced by its
neighbors.
(B) Accordingly, the area over which the cells are coupled in their behavior increases with communication range, and homogeneous patches appear.
(C) If the different cell types have different functions (e.g., only the blue cell is able to deal with a certain environmental situation), the strong dispersal of different
cell types allows a similar good response over the entire population. However, upon cluster formation, areas that show optimal response exist, but so do areas
without any response—which in the most extreme case, where all cells are synchronized, can lead to a complete loss of the blue cell function.
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sense their close environment, which of-

fers only local, subjective, and potentially

error-prone information. In contrast, a

population of spatially arranged individ-

uals each senses a different part of space;

by combining these local pieces of infor-

mation via communication, the population

achieves a much more complete picture

of the environment and can compensate

for individual errors (Couzin, 2007).

In order to achieve such a collective

sensing, the individuals have to be ar-

ranged in space, and indeed, the formation

of social collectives is veryoftenaccompa-

nied by the formation of spatial structure:

schools of fish, swarms of birds, herds
of mammals, colonies of social insects, or

the above-mentioned slime mold each

exhibit a rich variety of collective structural

dynamics (Parrish and Edelstein-Keshet,

1999). In all of those cases, simple

communication rules between individuals

lead to the emergence of higher-order

structures.

Maire and Youk observe a similar

emergence of spatial structure in their

model. The length over which the commu-

nication takes place influences the size

of emerging clusters of synchronous

behavior (Figure 1B). This emergent

spatial structure is in line with other work

that used communicating cellular auto-
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mata to describe pattern formation in

ecosystems or developing organisms

(Ermentrout and Edelstein-Keshet, 1993),

showing the strong connection between

communication and self-organized spatial

order.

Often pattern formation is described as

an interplay between activating and inhib-

iting communication like in the famous

Turing patterns. However, the model by

Maire and Youks shows that positive in-

teractions together with a lower detection

threshold are sufficient to lead to pattern

formation. Although the emerging pat-

terns are—contrary to Turing patterns—

not strictly defined in their size, position,
ovember 25, 2015 ª2015 Elsevier Inc. 311
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and shape, the simplicity of Maire and

Youks’ mechanism could make it of gen-

eral importance in natural systems.

Establishing spatial collectives may be

of importance in the structural formation

of tissues, bacterial communities, and

ecosystems. The presented framework

shows how individuals can tune their

role in those processes and thus the pro-

cesses themselves and therefore pro-

vides a path toward understanding those

complex systems.
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Studying autismgenes in the context of the protein complexes towhich they belong illustrates the potential of
network-centric approaches for understanding complex genetic disease.
Autism spectrum disorders (ASD) are a

set of related neurodevelopmental dis-

eases with shared phenotypes such as

impaired language skills and social cogni-

tion. Although ASD is quite prevalent,

having been reported to affect �1% of

the population (Miles, 2011), its causes

remain poorly understood. This can be

largely attributed to the complexity of

the disease, which so far has been linked

to a diverse set of associated genes. In

this issue of Cell Systems, Li et al. (2015)

examine ASD-associated genes in the

context of protein complexes to explore

underlying mechanisms of the disease

and to suggest shared etiologies between

forms of ASD associated with other

conditions (syndromic ASD) and those

forms for which the cause is unknown

(idiopathic ASD).

The genetic basis of autism is highly

complex and heterogeneous. In an

attempt to identify risk genes, recent ef-

forts have used increasingly large cohort

sizes (De Rubeis et al., 2014; Iossifov

et al., 2014) and sophisticated statistical

techniques to integrate transmitted, de
novo, and case-control genetic variation

(De Rubeis et al., 2014). While this has

led to the discovery of key ASD genes,

including voltage-gated ion channels, his-

tonemodifiers, and chromatin remodelers

(De Rubeis et al., 2014), the physical orga-

nization of these genes, especially in rele-

vant cell types, remains un-

known. Furthermore, since the observed

number of mutations in individual genes

is only slightly higher than expected, poly-

genic models are needed to accurately

identify ASD risk genes (Neale et al.,

2012). Because it has been shown that

ASD genes form highly interconnected

protein networks (Neale et al., 2012;

O’Roak et al., 2012), Li et al. take the

next step and carefully elucidate these

networks in neuron-like cells used as

models in autism research.

The authors characterize protein

complexes involving previously identified

ASD genes. Using a published resource

of human protein complexes, they find

that histone deactylases HDAC1 and

HDAC2 in the NuRD chromatin-remodel-

ing complex interact with orthologs of
ASD genes in the embryonic mouse

brain and positively regulate down-

stream ASD genes during early brain

development.

Next, Li et al. extend this result by using

HDAC1 as well as five idiopathic ASD risk

genes (ANK2, CHD8, CUL3, DYRK1A,

POGZ) and a syndromic ASD risk gene

(FMR1) as ‘‘baits’’ to pull down protein

complexes, which were then identified

using mass spectrometry. This is the first

systematic study to identify protein com-

plexes involving autism-related genes in

a cultured neuronal cell line, yielding 119

high-confidence interactions. Compari-

sons to two independent gene expression

datasets confirmed that the interacting

proteins are in fact co-expressed in hu-

man brain tissue, supporting the idea

that this cell-type-specific network may

be highly valuable in understanding the

physical basis of how ASD genes work.

As an example, the authors find that

the I304N mutation on the FMR1-en-

coded RNA-binding protein FMRP signif-

icantly perturbs the underlying interac-

tome network. Since FMRP-regulated
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