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Direct observation of increasing recovery length 
before collapse of a marine benthic ecosystem
Luca Rindi1*, Martina Dal Bello1†, Lei Dai2‡, Jeff Gore2 and Lisandro Benedetti-Cecchi1

Ecosystems can experience catastrophic transitions to alternative states, yet recent results have suggested that slowing down 
in rates of recovery after a perturbation may provide advance warning that a critical transition is approaching. Perturbation 
experiments with microbial populations have supported this hypothesis under controlled laboratory conditions, but evidence 
from natural ecosystems remains rare. Here, we manipulated rocky intertidal canopy algae to test the hypothesis that the spa-
tial scale at which the system recovers from a perturbation in space should increase as the system approaches the tipping point, 
marking the transition from a canopy-dominated to a turf-dominated state. Empirical estimates of recovery length, a recently 
proposed spatial indicator of an approaching tipping point, were obtained by comparing the spatial scale at which algal turfs 
propagated into canopy-degraded regions with decreasing canopy cover. We show that recovery length increased along the gra-
dient in canopy degradation, providing field-based evidence of spatial signatures of critical slowing down in natural conditions.

Ecological shifts are increasingly observed in natural systems 
as diverse as shallow lakes, coral reefs and savannahs1–3. The 
ubiquity of such phenomena has stimulated research on early 

warning signals to forewarn the approach of a system to a tipping 
point4. There is a growing interest in using the phenomenon of 
‘critical slowing down’ to measure the distance of a system to a criti-
cal threshold5,6. According to theory, a system that is approaching a 
critical threshold recovers more slowly from perturbations and may 
experience a change in the pattern of fluctuations4,5,7. This phenom-
enon may also be signalled by generic indicators of an approach-
ing tipping point, such as increasing variance and autocorrelation 
of state variables. Critical slowing down and early warning signals 
have been evaluated using correlative approaches (for example, 
through the analysis of time series and spatial data), simulations 
and experiments8–15.

The phenomenon of critical slowing down and its related signa-
tures are expected to emerge before a wide range of transitions in 
complex systems16,17. Previous research into critical slowing down 
has largely focused on the use of time series to predict the proxim-
ity of a system to a tipping point11,14,18,19. However, early warning sig-
nals derived from time series require high-quality observations over 
a long time span, which are often difficult to obtain20. An alterna-
tive approach involves the development of spatial early warning sig-
nals21–23. Critical transitions in spatially extended ecosystems may be 
announced by enhanced spatial variance and autocorrelation and by 
‘reddening’ in the power spectrum of the state variable24–26. Moreover, 
several studies have shown how changes in spatial patterns could pro-
vide signatures of impending transitions in spatially organized eco-
systems27–29. However, some spatial patterns are determined by the 
particular processes involved (for example, spatial self organization) 
and consequently cannot be extended to other ecosystems30.

A novel spatial indicator that has been proposed31, the recov-
ery length, is defined as the spatial distance from a perturbation 
at which a population recovers. The spatial scale of recovery in 
connected yeast populations was shown to be increased close to 

the tipping point31. Although such manipulations of synthetic  
communities have advanced our understanding of regime shifts 
considerably, most empirical tests of early warning signals have 
focused on single species in almost noise-free laboratory condi-
tions9,31,32. Therefore, the current challenge is to extend this test 
to spatially extended multispecies systems that experience natural 
fluctuations, a crucial step before we can apply the proposed indica-
tor in environmental conservation and management33.

Here, we use a rocky intertidal system characterized by two alter-
native states, one dominated by macroalgal canopies (Cystoseira 
amentacea Bory var. stricta Montagne) and one by turf-forming 
algae (low-lying filamentous and other very small algae) to evaluate 
recovery length as a spatial early warning indicator of an approach-
ing tipping point31 (Supplementary Fig. 1).

Results
On the basis of the results of a previous experiment, we expected  
C. amentacea and the associated understory assemblages to undergo a  
regime shift that leads to turf-dominated state, when canopy cover is 
progressively reduced10. To test this hypothesis in a spatial context, we 
performed a spatially uniform canopy removal experiment and mea-
sured the percentage cover of algal turfs over the following two years 
(see Methods). We then used potential analysis34 to construct poten-
tial landscapes and infer stable and unstable equilibria for different 
levels of canopy degradation. This analysis assumes that the frequency 
distribution of the state variable (algal turf cover) is shaped by the 
interaction between the deterministic dynamics (canopy removal) 
and stochastic forces (for example, sea storms, topography of the 
substratum). As a consequence of stochastic perturbations, a system 
exhibiting bistability may ‘flicker’ between alternative states, resulting 
in a potential landscape with two minima (stable states) separated 
by a local maximum (unstable equilibrium) (Supplementary Fig. 2). 
Using this approach, we found that turf cover showed a single low-
value equilibrium at low levels of canopy removal (0–33%) (Fig. 1a). 
By contrast, at intermediate levels of canopy degradation (33–70%), 
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algal cover showed a bistable pattern, with one state dominated by 
algal turfs and the other dominated by the algal canopy (Fig. 1a and 
Supplementary Fig. 2). As canopy cover was progressively reduced, 
the size of the basin of attraction around the canopy-dominated  
state shrunk, whereas that of the turf-dominated state increased 
(Fig. 1a,b, Bct). When more than 70% of the canopy was removed the 
system shifted to the turf-dominated state displaying only one basin 
of attraction (Fig. 1b, Bct). A simple mathematical model parameter-
ized by these data indicated the presence of a tipping-point at approx-
imately 70% of canopy removal, beyond which the system shifted to 
the turf-dominated state (Fig. 1b, Bct).

When approaching a tipping point, we expected the canopy- 
dominated state to become more susceptible to spatial perturba-
tions31. In our reconstructed stability landscapes, loss of resilience 

occurs as the basin of attraction around the canopy-dominated state 
shrinks (Fig. 1a,b). As the tipping point approaches, the ability of 
algal turfs to penetrate into areas occupied by C. amentacea should 
increase as the system loses stability (Fig. 2). To experimentally test 
this prediction, we performed a field experiment in which we evalu-
ated the ability of stands of C. amentacea to prevent the propaga-
tion of algal turfs from patches with no canopy, which acted as a 
source for diffusing turf species, to a canopy-degraded region. We 
established eight experimental transects of seven contiguous quad-
rats each, in areas originally covered by C. amentacea (Fig. 2a). In 
each experimental transect, two regions of different quality were 
produced: a patch where all C. amentacea was completely removed 
(hereafter, cleared patch), and a canopy-degraded region which was 
allocated to each of the following treatments: 0%, 25%, 50% and 
75% canopy removal (hereafter, canopy-degraded region, Fig. 2b). 
We evaluated the colonization success of algal turfs by estimating 
their percentage cover along the gradient of canopy degradation. 
The percentage cover of algal turfs was assessed twice: after one 
and two years following the set-up of the experiment. To capture 
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Figure 1 | Canopy degradation leads to a regime shift from a canopy- to a 
turf-dominated state. a, Potential landscapes inferred from experimental 
data (see Methods). The balls mark the minima and maxima of the 
potential landscapes corresponding to the canopy- (green) and the turf-
dominated (blue) states, whereas unstable points are shown in orange. 
Grey colours indicate the percentage cover of canopy removed (expressed 
as 100 minus the percentage of observed canopy cover). b, The stable 
and unstable equilibria of algal turfs as a function of canopy removed. The 
transition from a canopy- to a turf-dominated state occurs at about 70% 
of canopy degradation (indicated as Bct), whereas the transition from a 
turf- to a canopy-dominated system occurs at about 40% of canopy loss 
(Btc). Lines represent the fit of the Cystoseira–turf model: stable equilibria of 
the canopy- and turf-dominated systems are indicated in blue and green, 
respectively, whereas unstable equilibria are shown in red. Error bars 
are bootstrapped 95% confidences intervals. Cartoons illustrate the two 
alternative states: Cystoseira amentacea in brown and algal turfs in green.
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Figure 2 | Schematic illustration of the experiment and measurement of 
the recovery length. a, Horizontal view of an unmanipulated transect with 
full cover of C. amentacea (semi-transparent plants indicate that the canopy 
extended off the first two quadrats; approximately 90 cm). A cleared patch 
where all erect organisms were cleared from the substratum was produced 
at the edge of each transect to facilitate the colonization of algal turfs.  
b, Example of a canopy removal transect where approximately 50% of  
C. amentacea was removed. c, The algal turfs (in green) colonizing the cleared  
patch were expected to propagate into the canopy-degraded region.  
d, Hypothesized distance–decay profile of turf cover. As the distance from the  
low quality patch increases, the cover of algal turf should gradually decline 
to zero. Recovery length is defined as the spatial distance from the edge 
of the cleared patch (dashed line) at which the system becomes free from 
algal turf. The Lhalf (red square) marks the position of the half recovery point.
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the propagation of algal turfs from the cleared patch to the canopy-
degraded region, we sampled each transect at high spatial resolu-
tion (see Methods). We expected that algal turfs would completely 
colonize the cleared plots and have variable success in propagating 
vegetatively into the canopy-degraded region, depending upon the 
amount of canopy removed (Fig. 2c,d).

Consistent with this expectation, our experimental results 
showed that the increase in canopy degradation led to a deeper 
propagation of algal turfs from the cleared patch into the canopy-
degraded region in both sampling years (Fig. 3 and Supplementary 
Fig. 3). In control transects (0% of canopy removed), a sharp 
boundary of algal canopies prevented the propagation of algal turfs 
from the cleared patch into the transect. As the amount of canopy 
removed in the canopy-degraded region increased, the system pro-
gressively lost the capacity to prevent algal turf propagation from 
the cleared patch. In particular, in the 50% and 75% canopy removal 
treatments, algal turfs propagated much further from the cleared 
patch (Fig. 3).

To further test the hypothesis that the spatial scale at which the 
percentage cover of algal turfs decays to zero should increase as 
the system approaches the canopy threshold, we developed a spa-
tial version of the canopy–turf model (see Methods). This model 
reflects the two-dimensional spatial structure of experimental tran-
sects and explicitly includes the heterogeneity in spatial distribution 
of C. amentacea. Model simulations supported our hypothesis and 
the experimental observation that the spatial scale at which algal 
turf propagates within the higher quality region increases with can-
opy loss (Fig. 4a,b and Supplementary Fig. 4).

To quantify the spatial scale at which algal turfs propagated 
into the canopy-degraded region we used two different metrics of 
recovery length: the half-point recovery length (Lhalf) and the expo-
nential recovery length (Lexp)31. We quantified both indicators by 
computing the one-dimensional normalized decay profile for each 
experimental transect (see Methods). The one-dimensional decay 
profiles (Fig. 5a) showed spatial patterns that were consistent with 
two-dimensional data (Fig. 3 and Supplementary Figs 3, 5). The Lhalf 
measures the distance between a cleared patch and the spatial loca-
tion at which the percentage cover of algal turfs halves (Fig.  2d).  
We estimated Lhalf by fitting a local polynomial regression to the  

one-dimensional decay profiles of each experimental transect 
(Fig. 5a,b and Supplementary Fig. 5). The Lexp was obtained by fit-
ting an exponential function to the decay profile of each transect 
(Supplementary Fig. 6). The half-point recovery length increased 
more than four-fold along the gradient of canopy degradation 
(Fig. 5c). This result was unaffected by a particular choice of the size 
of the spanning window used in smoothing the data (Supplementary 
Fig. 7 and Supplementary Methods). The Lexp more than doubled 
along the gradient of canopy degradation (Fig.  5d), showing the 
same pattern of an increasing Lhalf. These results were supported by 
spatial model simulations, which showed a consistent increase of 
both Lhalf and Lexp along the gradient of canopy degradation (Fig. 4c).

Discussion
Our results show that recovery length may anticipate the critical 
threshold marking the transition between the canopy- to the turf-
dominated state. In particular, both metrics for the recovery length, 
Lhalf and Lexp, increased markedly along the gradient of canopy deg-
radation. These findings highlight the potential of applying spatial 
indicators for loss of resilience to forewarn the approach of a system 
to a critical threshold. Notably, the recovery length can, in principle, 
be measured at any particular moment in time; the only require-
ment is the presence of a sharp boundary in external conditions 
(canopy cover in our case) between regions of different quality. Such 
boundaries are present at a variety of spatial scales in aquatic and 
terrestrial ecosystems. For example, small-scale (hundreds of centi-
metres to tens of metres) boundaries and sharp habitat transitions 
have been documented in algal canopies35, mussel beds36, shallow 
lakes37, salt marshes38 and forest–savannah39. These are appropriate 
systems to further test the ability of the recovery length to inform on 
impending regime shifts in real-world conditions.

Previous work has shown how generic temporal and spatial indi-
cators can successfully indicate the approaching shift between con-
trasting trophic structures in a lake ecosystem11,12,40. However, early 
warning signals, such as spatial correlation and spatial variance, 
may fail to show the approach to a tipping point in systems in which 
scale-dependent feedbacks generate periodic spatial patterns21,30.  
In contrast to patch-based and pattern-based indicators (for exam-
ple, patch size distribution and regular-periodic patterns)27,41,42, 
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recovery length metrics may be applied to a wider range of spatial 
systems given that the recovery of local patches slows down when 
approaching a tipping point. Simulations have also shown that 
recovery length may be less data demanding compared to more 
traditional indicators31. However, the recovery length may not be 
suitable for the identification of an approaching tipping point in 
highly spatially heterogeneous systems, where strong heterogeneity 
(for example, the alternation of favourable and unfavourable abi-
otic conditions) in the landscape may alter the diffusion patterns 
across space. Strong spatial heterogeneity may hamper the ability 
of recovery length and other spatial indicators (for example, spatial 
correlation) to provide early warning of upcoming transitions22,23,31. 
Therefore, the judicious use of all available indicators will pro-
vide the best way to evaluate potential impending regime shifts in  
practical applications.

Canopy algae such as kelps and fucoids are dominant habitat-
forming species in rocky intertidal and shallow subtidal habitats 
along the world’s temperate coasts43. There is increasing concern 
about the ongoing replacement of structurally complex algal cano-
pies by less complex habitats that are dominated by turf-forming 
species or barren grounds, ultimately resulting in the loss of eco-
system services44–46. Consideration of recovery length in environ-
mental sampling could substantially contribute to identify areas that 
are prone to the transition to a degraded state and may help priori-
tizing management efforts and economic investments for the con-
servation of endangered marine ecosystems47. Given the concern 
that increasing human pressure can lead to pronounced shifts in 
many natural and social systems48–50, the capacity to obtain snapshot  
measurements of resilience must become a priority for environmen-
tal conservation and management.

Methods
Study system. The experiment was initiated in July 2013 at Capraia Island (43.048° N,  
9.828° E), about 64 km off the Western coast of Italy, in the Ligurian Sea (north-
west Mediterranean). At heights on the shore between 0 and − 0.3 m with respect 
to the mean low water level, canopy algae Cystoseira amentacea Bory var. stricta 
(Montagne) forms belts extending for tens of meters in the alongshore direction. 
C. amentacea maintains a species-rich understory assemblage of small algae and 
sessile invertebrates44. This interaction is typically described as a facilitation: the 
canopy provides shade and ameliorates physical stress for understory species and 
it also prevents the settlement of algal turfs51. The canopy dominated state is stable, 
because it prevents the settlement and expansion of algal turf52. Algal turfs are an 
intricate mat of low-production and low-diversified tiny algae, that can spread 
vegetatively and recruit as propagules from the water column53. Once established, 
algal turfs develop in a dense mat that prevents the settlement of C. amentacea44,52 
(Supplementary Fig. 1).

Experimental design. In July 2013, we established 8 transects of six 30 ×  30 cm 
contiguous quadrats in areas fully covered by C. amentacea (100%). Two replicate 
transects were randomly assigned to each of the following treatments: canopy 
control (0% canopy removal), 25%, 50% and 75% of canopy removal. Fronds  
and holdfasts of C. amentacea were removed by hammer and chisel, paying  
care not to damage the understory assemblages. A cleared patch of 30 ×  30 cm, 
where all C. amentacea was completely removed (including understory 
assemblages), was produced at one end of each transect (Fig. 2b). Treatment 
conditions were maintained throughout the duration of the study by keeping the 
percentage cover of C. amentacea as close as possible to the nominal level in each 
experimental transect.

Sampling. The response of algal turfs and C. amentacea to experimental  
treatments was evaluated twice: one and two years after the set-up of the 
experiment (July 2014, July 2015). Visual estimates of percentage cover were  
used to assess the abundance of algal turf in each of the 30 ×  30 cm plots along  
the transects. The cleared patch and the first two adjacent quadrats of the  
nearby transect were sampled by dividing each of the 30 ×  30 cm plots into a  
grid of 15 ×  15 sub-quadrats of 2 ×  2 cm, yielding 675 observations for each  
of the transects with cleared patches. We focused on the cleared patch and the  
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first two adjacent quadrats in the canopy-degraded region for our analysis.  
The signal owing to algal turf propagation in quadrats further away from the 
cleared patch could be masked by algal turf colonization from the water column.

Recovery length. The key metric used in this study to assess recovery in space  
is the Lhalf

31, which defines the distance at which the cover of algal turfs declines  
to half of the value observed in the cleared patch. We calculated this metric  
from the high spatial resolution data, after averaging across the 15 sub-quadrats  
at a given distance from the cleared patch in each transect. In this way we obtained 
30 measurements of turf cover extending 60 cm into the canopy-degraded  
region at incremental distances of 2 cm from the cleared patch. These 
measurements were used to define a one-dimensional decay profile of algal  
turfs. Data were also averaged across all the sub-quadrats in a cleared patch,  
to obtain a single reference value for each transect. Turf cover was normalized  
in each decay profile as zi =  (Xi− X31)/(X1− X31), where Xi is an individual 
measurement of turf cover at position i, whereby i ranges from 1 (the observation 
in the cleared patch) to 31 (the sub-quadrat extending the furthest into the 
transect). The Lhalf was estimated by performing a weighted local polynomial 
regression (R function ‘loess’, with a span of 0.8) to each decay profile and the 
location of half-decay, at which = .= =z z0 5i L i( ) 1half , was determined (Fig. 5a,b). 
The span is a parameter that controls the degree of smoothing. We calculated 
an additional metric to assess recovery in space: Lexp, which is the deterministic 
analogue of Lhalf. Lexp, was estimated by fitting a weighted exponential function  
with two parameters −c X Lexp( / )1 exp  (R function nlsLM, non-linear least  

square fitting with Levenberg–Marquardt algorithm) to each decay profile 
(Supplementary Fig. 6).

One of the two 75% canopy removal transects was excluded from the 
computation of both indicators (Lhalf and Lexp) for the first year, owing to high 
canopy cover (92%) in the quadrat adjacent to the cleared quality patch, which 
effectively prevented the invasion of algal turfs in that position. The other 75% 
canopy removal transect also had more algal canopies than it should in the first 
year (with about 45% instead of 75% of canopy removed; Fig. 5c,d), but this  
did not prevent the spread of algal turfs from the cleared patch into the transect.  
The inability to maintain the nominal level of 75% of algal canopies was a 
consequence of an unusual recruitment event in the first year of the experiment. 
Experimental conditions were immediately restored and maintained throughout 
the second year. These discrepancies increased differences between years for  
the 75% removal transects. We note, however, that despite differences  
between nominal and realized treatment levels, the two indicators performed  
as expected in relation to the amount of algal canopy effectively present in a 
transect (Fig. 5c,d).

We used bootstrap to calculate the standard errors for both indicators by 
resampling the measurements 1,000 times for each spatial location x and fitting  
the average decay profile (Supplementary Methods).

Potential analysis. We used potential analysis to reconstruct the potential 
landscape of turf cover for different levels of canopy degradation. This analysis 
used an independent set of data from the data used to quantify recovery length. 
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In July 2013 we established 8 experimental transects as described for the main 
experiment, but without the cleared patch at one edge, as part of a study on the 
colonization of alga turfs from the water column. Visual estimates of percentage 
cover of algal turfs were obtained at high spatial resolution in July 2015, as 
described for the main experiment.

Potential analysis has been widely applied to highly noisy climate time series 
and large spatial datasets to test for the presence of alternative states34. Assuming 
that a series of data is approximated by a stochastic potential equation:

σ= − +dZ U z dt dW( ) (1)

where U(z) is the potential function, z is the state variable (in our case, percentage 
algal turf cover measured at the scale of 2 ×  2 cm), σ is the magnitude of noise 
of the system and dW is a noise term (Weiner process), the probability density 
distribution of the data can be used to calculate the potential landscape of the 
system, where minima of potential indicate the stable states and maxima the 
unstable ones. The Fokker–Planck equation allows calculation of the potential (U) 
from the probability density of the state variable as:

σ= −U p
2

log( ) (2)d

where σ is the magnitude of noise level and pd is the probability density estimated 
from experimental data. Notably, as our primary interest was a qualitative 
estimation of the potential landscape (and identification of stable and unstable 
states), we scaled the potential to the noise level (U/σ2). We used a Gaussian kernel 
to estimate the probability density function with a standard bandwidth estimated 
by the Scoot’s procedure: h =  1.06s / n1/5 (where s is the standard deviation of  
the experimental data and n is the sampling size). The bandwidth was corrected 
with a factor 0.25 to obtain a more robust estimation of equilibria and to avoid 
spurious finding due to the discrete nature of the data. Local minima and 
maxima in the probability density function were numerically estimated, using 
an optimization procedure, which filters out local patterns when the differences 
between local maxima and minima were larger than a threshold value (0.005) 
and with a minimum density of 0.1. Potential analysis was performed using the 
livpotential_ews function in the earlywarning R package18,54.

Confidence intervals of turf cover equilibria were obtained by bootstrapping 
the data of each transect 1,000 times. At each iteration, the potential analysis was 
applied to data resampled with replacement, and stable and unstable equilibria 
were estimated and stored. 95% confidence intervals were estimated for each 
equilibrium as the 2.5th and 97.5th of the bootstrapped data.

Turf–Cystoseira model. We developed a simple mathematical model, based on the 
turf–Cystoseira model10 that included the processes that drive algal turf dynamics 
in response to canopy loss:







= − − +−dT

dt
rT T

K
CaT w1 exp (3)bT

Here, T is the percentage cover of algal turfs (%), r is the intrinsic growth rate 
(month−1, hereafter mo−1), K is the percentage carrying capacity (%), C is the 
percentage cover of C. amentacea and w (% mo−1) is the contribution to the benthic 
cover of algal turfs due to settlement from the water column. The aTexp(−bT) 
term models the competitive effect of the canopy on algal turfs, which encapsulates 
effects due to light attenuation and competition for space. Furthermore, because 
algal turfs may also colonize from the water column as propagules or spores, we 
included a density independent influx (w) into the model.

The turf–Cystoseira model (Equation (3)) was fitted to unstable and stable 
equilibrium points of algal turf cover obtained by the potential analysis using 
maximum-likelihood methods assuming log-normally distributed errors. The 
predicted stable and unstable equilibria for algal turfs were obtained through 
a stability analysis repeatedly for each level of the canopy removal treatment53 
(Supplementary Methods). Predicted and observed values of turf cover were 
compared for maximum-likelihood parameter estimation using function mle2  
in the package bbmle assuming log-normally distributed errors55. The negative  
log-likelihood function of equilibrium values of turf cover for a given level of 
canopy removal (predicted by Equation (1)) is:

∑ ∑
σ

πσ
σ

= − − −
= =

NLL T r K a b w
n T T T

( ( , , , , ), )

2
log(2 ) (log ) 1

2
(log log )

(4)
e

e
i

n

p i
e i

n

p i i

0

2

1
, 2

1
, 0,

2

where To is the predicted equilibrium obtained by the model for a specific level of 
canopy removed, Tp is the equilibrium (expressed as % turf cover) for a specific 
value of canopy removed obtained through the potential analysis, σe

2 is a parameter 
that represents the degree of environmental stochasticity, and with the other model 
parameters as defined for Equation (3). The model was fit to equilibria estimated 
by the potential analysis (see ‘Potential analysis’) minimizing the negative log-
likelihood function using the Nelder–Mead algorithm (Supplementary Table 1).

To further investigate whether the spatial scale at which the percentage cover of 
algal turfs decays to zero increases as the system approaches the canopy threshold, 
we produced a spatial version of the turf–Cystoseira model in Equation (3):









∂
∂

= − − + + ∇−T x y t
t

rT T
K

CaTe w D T
( , , )

1 (5)bT 2

Vegetative propagation of algal turfs was modelled as Laplace operator 












∇ = ∂

∂
+ ∂

∂x y

2
2

2

2

2

in x and y spatial coordinates, multiplied by the diffusion coefficient 
D =  1 ×  10−4 m2 day−1. We did not formally estimate the parameter D using 
statistical procedures. D coeficient was obtained from a previous study where the 
colonization of algal turf in cleared patches from C. amentacea was monitored for 
one year52. The D coefficient was estimated by dividing the area colonized by algal 
turf (m2) by the time needed for the patch to be completely colonized. The model 
reflects the two-dimensional spatial structure of the experimental transects (Fig. 2) 
with the cleared patch and the canopy-degraded region embedded within a full 
canopy of C. amentacea. Since the degree of spatial variability in C. amentacea cover 
heavily influences the propagation of algal turfs, we explicitly modelled the spatial 
heterogeneity in canopy cover52. We assumed that C. amentacea individuals are 
approximated by a two-dimensional normal distribution N μ ∑( , ) where the mean 






μ

μ
μ= x

y

identifies the x and y position in the lattice, and the covariance matrix











∑ σ
σ σ

σ σ

σ
x

x y

x y

y

2
2

indicates the width of the frond of C. amentacea. We set the standard deviations σx 
and σy. to 0.2 m, corresponding to the average width of C. amentacea fronds.

We further explored the response Lhalf and Lexp to canopy degradation by 
computing these spatial indicators from the spatial model. Therefore, we generated 
100 random spatial patterns of canopy cover and ran the model for each level 
of canopy removal. We then computed Lhalf and Lexp for each simulated transect 
and obtained means and standard errors of indicators over the 100 replicates. 
Spatial model simulations were carried out using: raster56, mvtnorm57, deSolve58, 
ReacTran59 R packages.

Code availability. R scripts used to conduct the Maximum-likelihood estimation, 
bootstrap analysis and model simulations can be found at: https://figshare.com/
s/2eecbb7327adb7fc2d97.

Data availability. Data used in this study can be found at following link: https://
figshare.com/s/2eecbb7327adb7fc2d97.
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