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Community structure follows simple assembly 
rules in microbial microcosms
Jonathan Friedman1*, Logan M. Higgins1, 2 and Jeff Gore1*

Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the 
plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to 
understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure 
from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using syn-
thetic microbial communities composed of up to eight soil bacterial species. Nearly all competitions resulted in a unique, stable 
community, whose composition was independent of the initial species fractions. Survival in three-species competitions was 
predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between 
sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species 
competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community struc-
ture. Such an approach is key for anticipating the response of communities to changing environments, designing interventions 
to steer existing communities to more desirable states and, ultimately, rationally designing communities de novo.

Virtually every environment on Earth is teeming with micro-
bial life, from the human digestive tract to hydrothermal 
vents miles beneath the ocean’s surface. These microorgan-

isms are vital components of natural ecosystems: microbial activity 
drives Earth’s biogeochemical cycles1, fertilizes crops2 and directly 
influences human health and well-being3. Those functions are typi-
cally performed not by a single species, but rather by a diverse com-
munity composed of numerous interacting species. For example, 
there is growing realization that numerous human illnesses, such as 
inflammatory bowel disease, are associated with an altered micro-
bial community, rather than with any single pathogen4. The ability 
to predict the structure of these complex, multispecies communi-
ties is crucial for understanding how such communities form and 
function, managing natural communities and rationally designing 
functional communities de novo5–7.

Modelling and predicting microbial community structure is 
often pursued using bottom-up approaches that assume that species 
interact in a pairwise manner8–11. However, pair interactions may be 
modulated by the presence of additional species12,13, an effect that can 
significantly alter community structure14 and may be common in 
microbial communities15. While it has been shown that such models 
can provide a reasonable fit to sequencing data of intestinal micro-
biomes16,17, their predictive power remains uncertain, as it has rarely 
been directly tested experimentally (refs 18,19 are notable exceptions).

Current approaches to modelling microbial communities  
commonly employ a specific parametric model, such as the general-
ized Lotka–Volterra (gLV) model20–22. Generating predictions from 
such models requires fitting a large number of parameter values 
from empirical data, which is often challenging and prone to over-
fitting. In addition, the exact form of the interactions needs to be 
assumed, and a failure of the model can reflect a misspecification of 
the type of pairwise interaction, rather than the presence of higher-
order interactions23.

Here, we take an alternative approach in which qualitative infor-
mation regarding the survival of species in competitions between 

small sets of species (for example, pairwise competitions) is used to 
predict survival in more diverse multispecies competitions (Fig. 1). 
While this approach forgoes the ability to predict exact species 
abundances, it does not require specification and parameterization 
of the exact form of interactions. Therefore, it is robust to model 
misspecification, and requires only survival data, which can be 
more readily obtained than exact parameter values.

Intuitively, competitions typically result in the survival of a set 
of coexisting species, which cannot be invaded by any of the spe-
cies that went extinct during the competition. To identify sets of 
species that are expected to coexist and exclude additional species, 
we first use the outcomes of pairwise competitions. We propose the 
following assembly rule: in a multispecies competition, species that 
all coexist with each other in pairs will survive, whereas species that 
are excluded by any of the surviving species will go extinct. This 
rule formalizes an intuitive expectation regarding how communities 
may assemble, and can be used to systemically predict community 
structure from pairwise outcomes (Methods and Supplementary 
Fig. 1). Importantly, the rule predicts the likely outcomes of compe-
tition, rather than the only possible ones. For example, for limited 
parameter values, even the simple gLV model can generate out-
comes that are inconsistent with this assembly rule24.

results
To directly assess the predictive power of this approach, we used 
a set of eight heterotrophic soil-dwelling bacterial species as a 
model system (Fig.  2a and Methods). Competition experiments 
were performed by co-inoculating species at varying initial frac-
tions, and propagating them through five growth–dilution cycles 
(Supplementary Fig. 2). During each cycle, cells were cultured for 
48 h and then diluted by a factor of 1,500 into fresh media, which 
corresponds to ~10.6 cellular divisions per growth cycle and ~53 
cellular divisions over the entire competition period. The overall 
competition time was chosen such that species extinctions would 
have sufficient time to occur, while new mutants would typically 
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not have time to arise and spread. Community compositions were 
assessed by measuring the culture optical density, as well as by plat-
ing on solid agar media and counting colonies, which are distinct 
for each species25. These two measurements quantify the overall 
abundance of microorganisms in the community and the relative 
abundances of individual species, respectively. All experiments were 
carried out in duplicate.

Pairwise competitions resulted in stable coexistence or competi-
tive exclusion of one of the species. We performed competitions 

between all species pairs and found that in the majority of the pairs 
(19/28 =  68%, Fig. 2b) both species could invade each other, and thus 
stably coexisted. In the remaining pairs (9/28 =  32%) competitive  
exclusion occurred, where only one species could invade the other 
(time trajectories from one coexisting pair and one pair where 
exclusion occurs are shown in Fig. 2c. Outcomes for all pairs are 
shown in Fig. 2d). Species’ growth rate in monoculture was corre-
lated with their average competitive ability, but, in line with previ-
ous reports26, it could not predict well the outcome of specific pair 
competitions (Supplementary Fig. 3).

Next, we measured the outcome of competition between all 56 
three-species combinations. These competitions typically resulted 
in a stable community whose composition was independent of the 
starting fractions (Supplementary Table 1). However, 2 of the 56 
trios displayed inconsistent results with high variability between 
replicates. This variability probably resulted from rapid evolution-
ary changes that occurred during the competition (Supplementary 
Fig. 4). All but one of the other trio competitions resulted in stable 
communities with a single outcome, independent of starting con-
ditions. This raises the question of whether this unique outcome 
could be predicted based on the experimentally observed outcomes 
of the pairwise competitions.

Trios were grouped by the topology of their pairwise outcome 
network, which was used to predict their competitive outcomes. 
The most common topology involved two coexisting pairs, and a 
pair where competitive exclusion occurs (30/56 =  54%). To illustrate 
this scenario, consider a set of three species, labelled A, B and C,  
where species A and C coexist with B in pairwise competitions, 
whereas C is excluded when competing with A. In this case, our 
proposed assembly rule predicts that the trio competition will result 
in the survival of species A and B, and exclusion of C (Fig. 3a). This 
predicted outcome occurred for the majority of the experimentally 
observed trios (Fig. 3b), but some trio competitions resulted in less 
intuitive outcomes (Fig. 3c). For example, 1 of the 30 trios with this 
topology led to the extinction of A and the coexistence of B and C  
(Fig.  3c). The experimentally observed outcomes of competition 
in this trio topology highlight that our simple assembly rule typi-
cally works, and the failures provide a sense of alternative outcomes 
that are possible given the same underlying topology of pairwise 
outcomes. Unpredicted outcomes may occur due to several mecha-
nisms, which are considered in the Discussion.

Another frequent topology was coexistence between all three 
species pairs (15/56 =  27%), in which case none of the species is 
predicted to be excluded in the trio competition (Fig.  3d). Such 
trio competitions resulted in either the coexistence of all three spe-
cies, as predicted by our assembly rule (Fig. 3e), or the exclusion 
of one of the species (Fig. 3f). Overall, 5 different trio layouts, and 
11 competitive outcomes were observed (Fig.  3g–k). Notably, all 
observed trio outcomes across all topologies can be generated from 
simple pairwise interactions, including the outcomes that were not 
correctly predicted by our assembly rule24. An incorrect prediction 
of our simple assembly rule is therefore not necessarily caused by 
higher-order interactions.

Overall, survival in three-species competitions was well pre-
dicted by pairwise outcomes. The assembly rule predicted species 
survival across all the three-way competitions with an 89.5% accu-
racy (Fig. 4a), where accuracy is defined as the fraction of species 
whose survival was correctly predicted. To get a sense of how the 
observed accuracy compares to the accuracy attainable when pair-
wise outcomes are not known, as a null model, we considered the 
case where the only information available is the average probabil-
ity that a species will survive in a trio competition (note that this 
probability is not assumed to be available in our simple assembly 
rule). Using this information, trio outcomes could only be predicted 
with 72% accuracy (Fig. 4a and Methods). We further compared the 
observed accuracy to the accuracy expected when species interact 
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Figure 1 | a bottom-up approach to predicting community composition 
from qualitative competitive outcomes. a,b, Qualitative information 
regarding the survival of species in competitions between small sets of 
species, such as pairwise competitions (a), is used to predict survival in 
more diverse multispecies competitions, such as trio competitions (b).  
The particular pairwise outcomes illustrated here reflect the true outcomes 
observed experimentally in one set of three species (see Fig. 3b).
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solely in a pairwise manner, according to the gLV equations with a 
random interaction matrix (Methods). We found that the observed 
accuracy is consistent with the accuracy obtained in simulations 
of competitions that parallel our experimental setup (P =  0.29, 
Fig.  4b). Survival of species in pairwise competition is therefore 
surprisingly effective in predicting survival when species undergo 
trio competition.

Nonetheless, there are exceptional cases where qualitative pair-
wise outcomes are not sufficient to predict competitive outcomes of 
trio competitions. Accounting for such unexpected trio outcomes 
may improve prediction accuracy for competitions involving a 
larger set of species. We encode unexpected trio outcomes by creat-
ing effective modified pairwise outcomes, which replace the origi-
nal outcomes in the presence of an additional species. For example, 
competitive exclusion will be modified to an effective coexistence 
when two species coexist in the presence of a third species despite 
one of them being excluded from the pair competition. The effec-
tive, modified outcomes can be used to make predictions using the 
assembly rule as before (Methods and Supplementary Fig. 1). By 
accounting for unexpected trio outcomes, the assembly rule extends 
our intuition, and predicts community structure in the presence of 
potentially complex interactions.

The ability of the assembly rule to predict the outcomes of more 
diverse competitions was assessed by measuring survival in com-
petitions between all seven-species combinations, as well as the 
full set of eight species (Fig. 5a). Using only the pairwise outcomes, 
survival in these competitions could only be predicted with an 
accuracy of 62.5%, which is barely higher than the 61% accuracy 

obtained when using only the average probability that a species will 
survive these competitions (Fig. 5b). A considerably improved pre-
diction accuracy of 86% was achieved by incorporating information 
regarding the trio outcomes (Fig. 5b). As in the trio competitions, 
the observed accuracies are consistent with those obtained in gLV 
simulations that parallel the experimental setup, both when pre-
dicting using pairwise outcomes alone (P =  0.53) or in combination 
with trio outcomes (P =  0.21, Fig. 5c).

Discussion
Our assembly rule makes predictions that match our intuition, but 
there are several conditions under which these predictions may be 
inaccurate. First, community structure can be influenced by initial 
species abundances27, as has recently been demonstrated in pair-
wise competitions between bacteria of the genus Streptomyces28. 
Our assembly rule may be able to correctly predict the existence of 
multiple stable states, as it identifies all putative sets of coexisting, 
non-invasible species in a given species combination. However, we 
did not have sufficient data to evaluate the rule’s accuracy in such 
cases, as multistability was observed in only one of all our competi-
tion experiments.

Complex ecological dynamics, such as oscillations and chaos, can 
also have a significant impact on species survival29,30, making it dif-
ficult to predict the community structure. These dynamics can occur 
even in simple communities containing only a few interacting species. 
For example, oscillatory dynamics occur in gLV models of competi-
tion between as few as three species24, and have been experimentally 
observed in a cross-protection mutualism between a pair of bacterial 

Figure 2 | Pairwise competitions resulted in stable coexistence or competitive exclusion. a, Phylogenetic tree of the set of eight species used in this study. 
The tree is based on the full 16S gene and the branch lengths indicate the number of substitutions per base pair. b, Coexistence was observed for 19 of 
the 28 pairs, whereas competitive exclusion was observed for 9 of the 28 pairs. c, Changes in relative abundance over time in one pair where competitive 
exclusion occurred and one coexisting pair. The y axis indicates the fraction of one of the competing species. In the exclusion example (right panel), the 
species fraction increased for all initial conditions, resulting in the exclusion of the competitor. In contrast, in the coexistence case (left panel), fractions 
converged to an intermediate value and both species were found at the end of the competition. Blue and red arrows to the right indicate the qualitative 
competitive outcome, with the star marking the final fraction in the case of coexistence. Error bars represent the standard deviation of the posterior beta 
distribution of the fractions, based on colony counts averaged across replicates. d, Network diagram of the outcomes of all pairwise competitions.
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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Figure 3 | Observed and predicted outcomes of trio competitions. Changes in species fraction were measured over time for several trio competitions. a–c, 
Trios involving two coexisting pairs and one pair where competitive exclusion occurs. In these plots, each triangle is a simplex denoting the fractions of the three 
competing species. The simplex vertices correspond to a community composed solely of a single species, whereas edges correspond to a two-species mixture. 
The edges thus denote the outcomes of pair competitions, which were performed separately. Trajectories (grey arrows) begin at different initial compositions, 
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only species A and B are predicted to coexist for this pattern of pairwise outcomes. b, Example of a trio competition that resulted in the predicted outcome.  
c, An example of an unpredicted outcome. d–f, Similar to a–c, but for trios where all species coexist in pairs. g–k, All trio layouts and outcomes, grouped by the 
topology of the pairwise outcomes network. With the exception of one trio, all trio competitions resulted in a unique outcome. Dots denote the final community 
composition (not exact species fractions, but rather species survivals). One trio displayed bistability, which is indicated by two dots representing the two 
possible outcomes. Two trios displayed inconsistent results with high variability between replicates, which is indicated by a question mark.
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was consistent with the one found in gLV simulations, but this does 
not necessarily indicate that our species interact in a linear, pairwise 
fashion. In fact, fitting the gLV model directly to our pairwise data 
does not improve predictability (Supplementary Fig. 6). Determining 
whether, in any particular competition, predictions fail due to insuf-
ficient information regarding the strength of linear, nonlinear or 
higher-order interactions will require more detailed measurements.

Controlling and designing microbial communities has numerous 
important application areas ranging from probiotic therapeutics, to 
bioremediation and biomanufacturing5. The ability to predict what 
community will be formed by a given set of species is crucial for 
determining how extinctions and invasions will affect existing com-
munities, and for engineering desired communities. Our results 
suggest that, when measured in the same environment, commu-
nity structure can be predicted from the outcomes of competitions 
between small sets of species, demonstrating the feasibility of a 
bottom-up approach to understanding and predicting community 
structure. While these results are encouraging, they were obtained 
using a small set of closely related species in well-controlled labo-
ratory settings. It remains to be seen to what extent these results 
hold in other systems and in more natural settings, involving more 
diverse assemblages that contain additional trophic levels, in the 
presence of spatial structure and over evolutionary timescales.

Methods
Species and media. The eight soil bacterial species used in this study  
were Enterobacter aerogenes (Ea, ATCC#13048), Pseudomonas aurantiaca  
(Pa, ATCC#33663), Pseudomonas chlororaphis (Pch, ATCC#9446), Pseudomonas 
citronellolis (Pci, ATCC#13674), Pseudomonas fluorescens (Pf, ATCC#13525), 
Pseudomonas putida (Pp, ATCC#12633), Pseudomonas veronii (Pv, ATCC#700474) 
and Serratia marcescens (Sm, ATCC#13880). All species were obtained from 

ATCC. The base growth media was M9 minimal media25, which contained  
1×  M9 salts (Sigma Aldrich, M6030), 2 mM MgSO4, 0.1 mM CaCl2, 1×  trace metals 
(Teknova, T1001). For the final growth media, the base media was supplemented 
with 1.6 mM galacturonic acid and 3.3 mM serine as carbon sources, which 
correspond to 10 mM of carbon for each of these substrates. These carbon sources 
were chosen from a set of carbon sources commonly used to characterize soil 
microorganisms (Biolog, EcoPlate) to ensure that each of the eight species survives 
in monoculture. Nutrient broth (0.3% yeast extract, 0.5% peptone) was used for 
initial inoculation and growth before experiments. Plating was done on 10 cm Petri 
dishes containing 25 ml of nutrient agar (nutrient broth with 1.5% agar added).

Competition experiments. Frozen stocks of individual species were streaked out 
on nutrient agar Petri plates, grown at room temperature for 48 h and then stored 
at 4 °C for up to two weeks. Before competition experiments, single colonies were 
picked and each species was grown separately in 50 ml Falcon tubes, first in 5 ml 
nutrient broth for 24 h and next in 5 ml of the experimental M9 media for 48 h. 
During the competition experiments, cultures were grown in Falcon flat-bottom 
96-well plates (BD Biosciences), with each well containing a 150 μ l culture. Plates 
were incubated at 25 °C without shaking, and were covered with a lid and wrapped 
in Parafilm. For each growth–dilution cycle, the cultures were incubated for 48 h 
and then serially diluted into fresh growth media by a factor of 1,500.

Initial species mixtures were prepared by diluting each species separately to 
an optical density (OD) of 3× 10−4. Different species were then mixed by volume 
to the desired composition. This mixture was further diluted to an OD of 10−4, 
from which all competitions were initialized. For each set of competing species, 
competitions were conducted from all the initial conditions in which each species 
was present at 5%, except for one more abundant species. For example, for each 
species pair there were two initial conditions with one species at 95% and the  
other at 5%, whereas for the eight species competition there were eight initial 
conditions each with a different species at 65% and the rest at 5%. For a few  
species pairs (Fig. 2a,b), we conducted additional competitions starting at  
different initial conditions. All experiments were carried out in duplicate.

Measurement of cell density and species fractions. Cell densities were assessed by 
measuring OD at 600 nm using a Varioskan Flash plate reader. Relative abundances 
were measured by plating on nutrient agar plates. Each culture was diluted by a 
factor between 105 and 106 in phosphate-buffered saline, depending on the culture’s 
OD. For each diluted culture, 75 μ l was plated onto an agar plate. Colonies were 
counted after 48 h incubation at room temperature. A median number of 85 
colonies per plate were counted. To determine species extinction in competition 
between a given set of species, we combined all replicates and initial conditions 
from that competition, and classified as extinct any species whose median 
abundance was less than 1%, which is just above our limit of detection.

Assembly rule predictions and accuracy. For any group of competing species, 
predictions were made by considering all possible competitive outcomes (for 
example, survival of any single species, any species pair, and so on). Outcomes  
that were consistent with our assembly rule were those that were predicted  
to be a possible outcome of the competition (Supplementary Fig. 1). For any  
given competition, there may be several such feasible outcomes; however, a  
unique outcome was predicted for all our competition experiments.

Pairwise outcomes were modified using trio outcomes as follows. Exclusion 
was replaced with coexistence for pairs that coexisted in the presence of any 
additional species. Coexistence was replaced with exclusion whenever a species 
went extinct in a trio competition with two species with which it coexisted when 
competed in isolation. Only modifications caused by the surviving species or 
an invading species were considered. Therefore, a new set of modified pairwise 
outcomes was generated for each putative set of surviving species being evaluated.

The prediction accuracy was defined as the fraction of species whose survival 
was correctly predicted. When the assembly rule identified multiple possible 
outcomes, which occurred only in the gLV simulations, accuracy was averaged over 
all such feasible outcomes. In addition, when the competitive outcome depended 
on the initial condition, accuracy was averaged across all initial conditions.

For reference, we computed the accuracy of predictions made based on the 
probability that a species will survive a competition between the same number 
of species. For example, for predicting trio outcomes, we used the proportion of 
species that survived, averaged across all trio competitions. Using this information, 
the highest accuracy would be achieved by predicting that all species survive in 
all competitions, if the average survival probability is > 0.5, and predicting that all 
species go extinct otherwise.

Simulated competitions. To assess the assembly rule’s expected accuracy in a 
simple case in which species interact in a purely pairwise manner, we simulated 
competitions using gLV dynamics:
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Figure 4 | Survival in trio competitions is well predicted by pairwise 
outcomes. a, Prediction accuracy of the assembly rule and the null model, 
where predictions are made solely based on the average probability that 
species survive in trio competitions. b, The distribution of accuracies 
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mirror our experimental design. The experimentally observed accuracy is 
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where xi is the density of species i (normalized to its carrying capacity),  
ri is the species’ intrinsic growth rate and αij is the interaction strength between 
species i and j. For each simulation, we created a set of species with random 
interactions where the αij parameters were independently drawn from a  
normal distribution with a mean of 0.6 and a standard deviation of 0.46.  
Results were insensitive to variations in growth rates, thus they were all set  
to 1 for simplicity. These parameters recapitulate the proportions of coexistence 
and competitive exclusion observed in our experiments, and yield a distribution of 
trio layouts similar to the observed one (Supplementary Fig. 7). The probability  
of generating bistable pairs in these simulations is low (~3.7%, corresponding  
to one bistable pair in a set of eight species), and we further excluded the bistable 
pairs that were occasionally generated by chance, as we had not observed  
any such pairs in the experiments.

The accuracy of the assembly rules in gLV systems was estimated by running 
simulations that parallel our experimental setup. A set of eight species with 
random interaction coefficients was generated, and the pairwise outcomes were 
determined according to their interaction strengths. These outcomes were used to 
generate predictions for the trio competitions using our assembly rule. Next, all 
three-species competitions were simulated with the same set of initial conditions 
used in the experiments. Finally, the predicted trio outcomes were compared with 
the simulation outcomes across all trios to determine the prediction accuracy. 
Thus, a single accuracy value was recorded for each set of eight simulated  
species. Similarly, for each simulated eight-species set, the pair and trio outcomes 
were used to generate predictions for the seven-species and eight-species 
competitions, and their accuracy was assessed by comparing them to the  
outcomes of simulated competitions. Prediction accuracy distributions were 
estimated using Gaussian kernel density estimation from the accuracy values  
of 100 simulated sets of eight species.

One-sided P-values evaluating the consistency of the experimentally observed 
accuracies with the simulation results were defined as the probability that a 
simulation would yield an accuracy that is at least as high as the experimentally 
observed one.

Code availability. An implementation of the assembly rule and the gLV 
simulations as well as routines for evaluating the rule’s accuracy are freely available 
online at https://bitbucket.org/yonatanf/assembly-rule.

Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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