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Materials and Methods 

Experimental protocols 

We used a yeast strain derived from haploid cells BY4741 (mating type a, 

EUROSCARF). All experiments were performed in 200 μl batch culture on BD Falcon 

96-well Microtest plates at 30 °C using synthetic media (Yeast Nitrogen Bases + 

Nitrogen, Complete Supplement Mixture) supplemented with sucrose. Cultures were 

maintained in a well-mixed condition by growing in a shaker at 825 r.p.m. To avoid 

evaporation and contamination across wells, the plates were covered with Parafilm 

Laboratory Film. The 20% sucrose stock solution was filter-sterilized and stored with 

1mM Tris buffer, pH 8.0, to prevent acid-catalyzed autohydrolysis. In all experiments we 

manually added a trace amount of glucose 0.001%, so that the monosaccharide 

concentration in sucrose stock (<0.0001%) can be ignored.  

 

Serial dilutions were performed daily (23 hours of growth) with variable dilution factors. 

The eight dilution factors for the experimental data presented in Fig. 1 and Fig. 3 are 250, 

500, 750, 1000, 1133, 1266, 1400 and 1600. Population densities were recorded each day 

before the serial dilution by measuring optical density at 620 nm using a Thermo 

Scientific Multiskan FC microplate photometer and periodically confirmed by plating 

(Figure S8).  

 

Calculation of indicators 

Statistical indicators were calculated at each observation time over an ensemble of 

replicate populations. The standard errors and confidence intervals of the indicators were 

given by bootstrap. The formulas of indicators and bootstrap procedures are presented in 

the next two sections. 

 

In all the analysis we ensured environmental homogeneity by excluding populations with 

systematic differences in density, which are presumably caused by errors in daily 

dilution. For the eight dilution factors, the total number of replicate populations used for 

calculating indicators shown in Fig.3 is 70, 55, 56, 48, 46, 48, 49 and 48, respectively. 

Indicators calculated over the entire ensemble without imposing any selection display 

similar trends with larger increases (Figure S9).  



 

 

3 

 

Formula 

1) Sample standard deviation: 2

1

1
( )

1

n

i

i

s x x
n 

   

  

 x  : the sample mean. 

2) Coefficient of variation: the sample standard deviation divided by the sample 

mean. 

3) Sample skewness: 3
1 3/2
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3m : the sample third central moment; 2m : the sample variance. 

4) Autocorrelation time   

The autocorrelation time   was calculated as 
1/e   , where lag-1 autocorrelation 

  was estimated by the sample Pearson’s correlation coefficient between the 

population densities at subsequent days over all replicate populations.  

The sample Pearson’s correlation coefficient: 
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,i tx : sample i at day t; tx  : the sample mean at day t;  
txs : the sample standard 

deviation at day t. 

Negative lag-1 autocorrelation would be meaningless for calculation of 

autocorrelation time, so we made a cutoff at 0   
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An alternative estimator of autocorrelation time based on the definition of integrated 

autocorrelation time(31), which does not require a cutoff for lag-1 autocorrelation at 

zero, leads to similar results (data not shown). We also used regression to estimate the 

lag-1 autocorrelation. Regression normalizes the covariance by 
2

txs  (the sample 
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variance at day t) instead of 
1t tx xs s


(the product of standard deviation at day t and day 

t+1)(32).  For our analysis both estimators yielded similar results (data not shown). 

 

Bootstrap 

We used bootstrap to calculate standard errors of indicators. Indicators shown in Fig. 3 

are calculated based on an ensemble of replicate populations over a span of 5 days. In 

bootstrap, we resampled the replicates. For each resampled distribution, there are two 

alternative methods: (a) calculate the indicators for each day, and then average over 5 

days; (b) combine the data over 5 days into a single distribution, and then calculate the 

indicators. Both methods yielded almost identical results (data not shown). The error bars 

shown in Fig. 3 are calculated using method (a) and denote standard errors of indicators 

with resampling 1,000 times. 
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Supplementary Text 

Details of stochastic simulation  

Our simulation is based on a stochastic difference equation: 

( , )
1 1

n n g n n
t t t t

  


      (1) 

Population density at day t: n
t

 

Growth function: 1( , ) t
t

t

n
g n

n
   

Control variable:  =Dilution factor 

The growth function ( , )tg n   is generated by the deterministic model of two-phase yeast 

growth (Figure S4) by setting the total growth time during each day as 23 hours. In the 

simulation, we used the same parameter values as the fitting parameters listed in Table 

S1. 

We introduced the noise in daily dilution 
1 tn  as proportional to the population density. 

2

1~ (0, )
1

N   is a Gaussian random variable with standard deviation 1 0.15  . 

In different simulation runs, we observed clear signals of critical slowing down similar to 

that seen in experiments. The magnitude of increase in these indicators does not match 

perfectly with the experimental data, however, this is expected because: 1) our two-phase 

yeast growth model is an obvious simplification; 2) we only have crude estimates of the 

location of bifurcation and the magnitude of noise. The following derivations will 

provide a relationship between the indicators and the parameters in simulation. 

 

Derivations of critical slowing down and warning signals 

We define ( )eqn   as the non-zero stable fixed point of population density. t t eqx n n 
 
is 

the deviation from the stable fixed point at day t. 

The deterministic difference equation (without noise): 

( , )
1

n n g n
t t t


   

(2) 

After Taylor expansion of the growth rate ( , )tg n   at eqn  to the first order (ignoring 

2( )O x ) and then minus eqn  on both sides, it yields 

(1 '( , ) ) ( )
1

x g n n x x
t eq eq t t

    
             

(3) 

where 
( , )

'( , )

eqn n

dg n
g n

eq dn






  . 

As dilution factor   increases and approaches the bifurcation, '( , )g n
eq

  goes to zero 

(Figure S3), thus ( )   goes to one. Also, we can transform Equation (3) to 

  ( )
1

x x x
t t t

   
          

(4) 

It can be readily seen that the return rate of the system, 1   , goes to zero upon 

reaching the bifurcation. This is the defining feature of critical slowing down. 
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After adding the two noise terms and performing a similar Taylor expansion for Equation 

(1) (only keeping the first order terms of x
t

,
1
 ), we get 

( ) ( ) ( )
1 1

x x n
t t eq

      
                   

(5) 

This can be viewed as a first-order autoregressive (AR(1)) process(8, 33) with a Gaussian 

white noise at day t:
1t n

eq
   . From Equation (5) we can derive the indicators: (< >: 

the expectation operator. See Materials and Methods: Calculation of indicators) 

Mean: 0tx  , t eqn n   

 

The lag-1 autocorrelation:  
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/ 1/( ) , 1te e t         

 where  is the autocorrelation time. Referring to our previous derivations of critical 

slowing down, we can see that upon approaching the bifurcation the lag-1 autocorrelation 

goes to one. 

The return time  r  
satisfies (using Equation (3))   

1/ 1/1 ( )r t

t

x
e e

x

       

Thus we can see that return time equals the autocorrelation time. They both diverge upon 

the approach of bifurcation. 

 

Variance: 

2 2 2

12 2

2
( )

1

eq

t t t

n
n n x

 


     


 

Note ( )   , ( )eq eqn n  . 

Upon the approach of bifurcation, ( )   goes to one, the standard deviation and 

coefficient of variation also diverge. 

 

Thus, as the control parameter  (dilution factor) is tuned to push the system closer to 

bifurcation, the lag-1 autocorrelation ( )   goes to one and the autocorrelation time 

diverges; the standard deviation and coefficient of variation also diverge, and their 

divergence is inversely proportional to 21  . The derivations and simulation results 

support that the increased variation and autocorrelation time observed in our 

experimental system before the fold bifurcation is indeed due to critical slowing down, 

and not due to any possible difference between the strength of noise introduced during 

daily dilution at different conditions. 

 

Effects of measurement errors on indicators 

Here we will briefly investigate the effects of measurement errors on indicators within 

the framework of our system. This could be an important issue in evaluating early 
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warning signals from noisy data sets, and we feel it has not been addressed explicitly in 

previous literature. 

In our experiment, the measurement error comes from the measurement of optical 

density. It can be introduced as a Gaussian random variable 2

2 2~ (0, )N   with standard 

deviation 2   2×10
3
 cells/μl in our experiment (estimated by multiple measurements of 

optical density in the microplate photometer).  

The indicators will then be calculated based on the measured values of population density 

on day t   
^

2t tn n    

The deviation from equilibrium is changed to 
^

2t tx x    

Thus, there is an increase in variance 

 
2 2 22^ ^ ^

12 2

22
( )

1

eq
t t t

n
n n x

 



      


 

The covariance between different days is not changed 

 
^ ^

1 1t t t tx x x x     

However, there is a decrease in lag-1 autocorrelation ( )   because it is normalized by a 

larger variance now.   

 

Given the relatively small measurement errors in our experimental system, the effects can 

be safely ignored. However, they could have notable effects on indicators based on field 

data with larger measurement errors.  
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Figure S1. Catastrophic fold bifurcation vs. non-catastrophic transcritical bifurcation. 

The solid curves represent stable fixed points and the dashed curves represent unstable 

fixed points of a system. (A) If the curve of fixed points is folded backwards, the system 

can have two alternative stable states at a given condition. A fold bifurcation (solid 

circle) occurs when a stable fixed point and an unstable fixed point “collide” and 

annihalate(8, 17). For a population subject to the strong Allee effect, there is a fold 

bifurcation in the population dynamics as the condition deteriorates. Crossing the fold 

bifurcation would result in a catastrophic population collapse. Due to hysteresis, 

reversing back to the former stable state after the catastrophic collapse can be difficult. 

(B) At a transcritical bifurcation (solid circle), a stable fixed point and an unstable fixed 

point meet and exchange stability. A transcritical bifurcation in population dynamics is a 

non-catastrophic threshold. It does not lead to a collapse (a large and sudden drop in 

population density) but rather a gradual decrease of population density as the condition 

deteriorates. Also, reversal is easy as there is only one stable fixed point in the system. 

Improving the condition back to the point just before the transcritical bifurcation would 

lead to an immediate recovery to the former stable state. 
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Figure S2. Measurement of per capita growth rate of yeast in sucrose at both low and 

intermediate cell densities. (A) Yeast populations were grown from a wide range of  

initial densities (0.25-2500 cells/μl) in 2% sucrose to estimate the growth rate at both low 

and intermediate cell densities(27). Growth curves from different initial densities were 

superimposed (grey circles).  We measured the growth rate at intermediate cell densities 

over the range of 10
3
-5×10

4
 cells/μl (black circles), giving γhigh = 0.472 ± .015 hr

-1
 

(standard error, n=8 independent measurements from different initial densities) in 2% 

sucrose. At higher densities the culture saturated upon reaching the carrying capacity. A 

yeast culture with population density smaller than ~10
3
 cells/μl cannot be measured 

directly by absorbance in our microplate photometer. To measure the growth rate at low 

densities, we measured the time needed for the culture to reach a measurable density. The 

resulting locations of initial densities (black squares) allowed us to fit the growth rate at 

low cell densities γlow = 0.318 ± .008 hr
-1

 (95% confidence interval of the fitting 

parameter) in 2% sucrose, which is considerably lower than γhigh. The gap between the 

two growth phases in the graph is due to a lag phase when yeast cells adapt to the new 

media before starting growth. (B) In various sucrose concentrations, per capita growth 

rates of yeast at low densities (<10
3
 cells//μl) γlow is significantly lower than at 

intermediate densities (10
3
-5×10

4
 cells/μl) γhigh. At a higher sucrose concentration, γlow 

increases and the difference between γhigh and γlow decreases. As a control, in 2% glucose 

the growth rate of yeast is similar at low and intermediate densities. 
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Figure S3. Identification of the stable and unstable fixed points at different conditions.  

The stable and unstable fixed points can be identified as fixed points at which the ratio of 

population densities between subsequent days 1 1t tn n  (solid line), 
tn : population 

density at day t (t =1 to 6). The cooperative growth of yeast in sucrose leads to two stable 

fixed points, one close to saturation (blue circle) and the other one at extinction. There is 

an unstable fixed point (red triangle) in between. The populations are most fit at 

intermediate densities, thus displaying the Allee effect. The unstable fixed points are 

estimated by fitting the data points in the region where 1t tn n  is in the range of [0.5 2] 

and population density is between the detection limit (population density~5×10
2
 cells/μl, 

below which the measurement becomes inaccurate) and the value that gives the 

maximum growth. Error bars of unstable fixed points shown in Fig. 1E correspond to 

68% confidence interval of fitting parameters determined by bootstrap. The stable fixed 

points are estimated by the mean of replicate populations at equilibrium over five days 

and the error bars shown in Fig. 1E correspond to the standard deviation of day-to-day 

fluctuations. 
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Figure S4. A simple deterministic model of two-phase yeast growth. Motivated by past 

measurements(27) and experimental data shown in Figure S2, we constructed a simple 

deterministic model to simulate yeast growth in sucrose. This model is based on two 

phases: a slow exponential growth phase at low cell densities, followed by a logistic 

growth phase with a higher per capita growth rate at intermediate cell densities. A 

schematic view of the per capita growth rate 
1 dN

N dt
 as a function of the population 

density N is shown in (A) linear scale; (B) logarithmic scale. This model has five 

parameters: Tlag is the lag time before yeast cells start to grow after being transferred into 

new media. In the slow exponential phase, the population grows with a constant per 

capita growth rate γlow. After the population reaches a threshold density Nc, the 

subsequent logistic growth is determined by γhigh (γhigh>γlow) and the carrying capacity K.  

0
1

(1 )

low c

high c

N N
dN

N
N dt N N K

K





 


 
  



 

γlow, γhigh, and K can be directly estimated by experiments. Tlag can be estimated indirectly. 

Details of estimation and comparisons between the fitting parameters used in Fig.1E and 

the experimental measured values are listed in Table S1. 
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Figure S5. Estimated return time increases with dilution factor, consistent with the 

observation of critical slowing down. (A) We fit an exponential form 1 2( ) exp( )n t c c t  
 

to the relaxation curves of populations starting at a certain initial density. 

( )t eqn n n    denotes the deviation from the stable fixed point eqn  at day t. Each data 

point is the average of eight replicate populations. Subplots are titled with the 

corresponding dilution factors. (B) Estimated return time  
2

1

c
  . The error bars 

represent 68% confidence interval of the fitting parameter. There is a clear increase in 

return time, consistent with the observation of critical slowing down. In principle, an 

exponential relaxation is expected when the deviation from equilibrium is assumed to be 

very small(11, 18). The estimated return time by fitting the relaxation curves based on 

our experimental data could be inaccurate if the deviations are large enough to violate 

this assumption. Still, the increase in return time is significant and clear enough as an 

evidence of critical slowing down.  
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Figure S6. Indicators of critical slowing down appear in stochastic simulations. (A) 

Indicators in one simulation run with an ensemble of 500 replicate populations over a 

time span of 500 days. (B) Indicators in one simulation run with an ensemble of 50 

replicate populations over a time span of 5 days (close to the sample size in our 

experimental setup). The mean population density of the ensemble is also shown. There 

is an initial period of 10 days to stabilize the populations. Error bars are standard errors of 



 

 

14 

 

day-to-day fluctuations. Histograms of population density in the two runs are shown in 

Figure S7. Details of stochastic simulation are given in the Supplementary Text. 
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Figure S7. The magnitude of skewness decreases when approaching the bifurcation and 

shows large variation for small sample size. (A) One simulation run with an ensemble of 
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500 replicate populations over a time span of 500 days. Histogram of population density 

on the last day is shown. (B) One simulation run with an ensemble of 50 replicate 

populations over a time span of 5 days (close to the sample size in our experimental 

setup). Histogram of population density on the last day is shown. There is an initial 

period of 10 days to stabilize the populations. Error bars are standard errors of day-to-day 

fluctuations. The simulation adopted the same procedure as described in Figure S6. For 

the 500-day run, some populations at dilution factor 1600 went extinct stochastically and 

they were not included in the calculation of indicators in both Figure S6 and Figure S7.  

As shown in (A), in simulation with a large sample size, the magnitude of skewness 

decreases when approaching the bifurcation, in contrast to previous theoretical 

arguments(19). In (B), the large variation in results suggests that no change in skewness 

should be detectable with the relatively small sample size in our experiments. Moreover, 

it will also be dependent on how skewed the perturbations or measurement errors are. 

Thus, we conclude that skewness is a good warning signal in our system.  
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Figure S8. Calibration of optical density measurements and mapping to cell density. 

Population densities over three orders of magnitude were prepared by 17 serial dilution 

steps of 2/3 from an initial population at a highly saturated density. The fraction of the 

initial population density after each dilution step is shown on the x-axis. Optical density 

measurements were performed using a Thermo Multiskan FC microplate photometer at 

620 nm. The measured optical density (
measuredOD ) of the instrument is linear with cell 

density up to ∼0.3, while at higher densities measuredOD  saturates to a maximum value of 

recording. We use the following formula to transform the measured optical 

density measuredOD  (solid squares): 

 

max

max

ln[1 ]( )measured b
real b

b

OD OD
OD OD OD

OD OD


   


 

 

where bOD  is the background recording of a sample without cells and maxOD  is the 

maximum recording at saturating cell densities. In the calibration, we found 0.038bOD   

and max 1.92OD  .  After transformation, realOD  (open squares) reflects the real cell 

density given a recorded optical density measuredOD .  realOD  is linear with cell density and 

plating experiments confirmed that 1realOD   corresponds to cell density ≈1.1×10
5
 

cells/μl. Measurements in a standard spectrophotometer with 1 cm light path at 600 nm 

( 600OD ) showed that 600 5OD   in the spectrometer is roughly equivalent to 1realOD   

(data not shown).  
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Figure S9. With an increasing dilution factor, statistical indicators calculated over either 

the entire ensemble or a subset of populations showed similar trends. Comparison 

between statistical indicators calculated using all the replicate populations (dark blue 

triangles) and using a subset of populations (light blue circles, data shown in Fig.3) for 

conditions of fixed dilution factors. The increase of indicators at high dilution factors 

based on all the replicate populations was even more significant. In the subset of 

populations, some wells on the edges of 96-well plates or displaying large jumps of 

population density (>2×10
4
 cells/μl) between subsequent days, presumably caused by 

pipetting errors, were excluded. For the eight dilution factors, the total number of 

replicate populations without imposing any selection is 80, 64, 64, 56, 56, 56, 56 and 48, 

respectively. 
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Table S1. Comparison between fitting parameters and experimentally measured values. 

The model parameters are explained in Figure S4. Fitting parameters are the values used 

for a typical fit of the bifurcation diagram shown in Figure 1e. γhigh and γlow are 

determined experimentally as explained in Figure S2. K, the carrying capacity, is 

determined by taking the average density of ten saturated populations measured over an 

interval of five hours. Tlag, the time before yeast cells start growing in the new media, can 

be estimated indirectly from the following equation (right after the lag period, cells 

starting at intermediate densities approximately follow an exponential growth with 

growth rate γhigh):  

0log( ) log( ) ( )t lag highN N t T   
     lagt T

 
where Nt is the measured population density at time t and N0 the initial population density 

(>10
3
 cells/μl). We cannot measure the threshold density Nc directly, as it is below the 

detection limit of our microplate photometer; an indirect estimate dependent on γlow, γhigh 

and Tlag would be inaccurate.  

We note that the two-phase yeast growth model is a simplified description of reality so it 

is not surprising that the parameter agreement is not perfect. However, the fit of the 

experimental bifurcation diagram (Fig.1E) and the observation of critical slowing down 

signals in stochastic simulations being consistent with experimental data (Figure S6) 

merit the model as a reasonable approximation of reality, which captures the cooperative 

feature of yeast growth dynamics in sucrose.   

 

  Measured values Fitting parameters 

γhigh 0.472 ± .015 hr
-1

 0.439 hr
-1

 

γlow 0.318 ±  .008 hr
-1

 0.309 hr
-1

 

K 1.95 ± .13×10
5 

cells/μl 1.76×10
5 

cells/μl 

Tlag 2.58 hr 2.97 hr 

Nc - 2.76×10
2
 cells/μl 
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